Skip to main content
Log in

Free vibration investigation of nano mass sensor using differential transformation method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present study, transverse vibration of nano-cantilever beam with attached mass and two rotational and transverse springs at its end is studied. Resonance frequency of vibrating system is influenced by changing mass particle and stiffness coefficients. Euler–Bernoulli beam theory, nonlocal constitutive equations of Eringen, and Hamilton’s principle are used to develop equations of motion. Differential transformation method (DTM) is applied to solve the governing equations of the nanobeam with attached mass particle. Accurate results with minimum mathematical calculation are the advantages of DTM. A detailed parametric study is conducted to investigate the influences of nonlocal parameter. The results can be used in designing of nanoelectromechanical systems. To verify the results, some comparisons are presented between differential transform method results and open literature to show the accuracy of this new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lijima S. Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  ADS  Google Scholar 

  2. Jacobs C.B., M.J. Peairs, B.J. Venton Review: carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta. 662(2), 105–127 (2010)

    Article  Google Scholar 

  3. Balasubramanian K., M. Burghard Biosensors based on carbon nanotubes. Anal. Bioanal. Chem. 385(3), 452-468 (2006)

    Article  Google Scholar 

  4. Li C., T.-W. Chou Atomistic modeling of carbon nanotube-based mechanical sensors. J. Intell. Mater. Syst. Struct. 17(3), 247–254 (2006)

    Article  Google Scholar 

  5. Georgantzinos S.K., N.K. Anifantis Carbon nanotube-based resonant nanomechanical sensors: a computational investigation of their behavior. Physica. E. Low-Dimens. Syst. Nanostruct. 42(5), 1795-1801 (2010)

    Article  ADS  Google Scholar 

  6. Cao G., Xi C. Buckling of single-walled carbon nanotubes upon bending: molecular dynamics simulations and finite element method. Phys. Rev. B 73(15), 155435 (2006)

    Article  ADS  Google Scholar 

  7. Cao G., X. Chen, J.W. Kysar Strain sensing of carbon nanotubes: numerical analysis of the vibrational frequency of deformed single-wall carbon nanotubes. Phys. Rev. B 72(19), 195412. (2005)

    Article  ADS  Google Scholar 

  8. Reddy J. Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, (2), 288-307 (2007)

    MATH  Google Scholar 

  9. T. Murmu, S.C. Pradhan(2009) Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model. Physica. E Low-Dimens. Syst. Nanostruct. 41(8), 1628–1633

    Article  ADS  Google Scholar 

  10. Aydogdu M. Axial vibration of the nanorods with the nonlocal continuum rod model. Physica. E Low-Dimens. Syst. Nanostruct. 41(5), 861–864 (2009)

    Article  ADS  Google Scholar 

  11. Kiani K, B Mehri Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories. J. Sound Vib. 329(11), 2241–2264 (2010)

    Article  ADS  Google Scholar 

  12. Şimşek M. Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Comput. Mater. Sci. 50(7), 2112–2123 (2011)

    Article  Google Scholar 

  13. Arani A.G. et al. Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory. Compos. Part B: Eng. 43.2 : 195-203 (2012)

    Google Scholar 

  14. Aydogdu Metin "Longitudinal wave propagation in multiwalled carbon nanotubes. Compos. Struct. 107: 578–584 (2014)

    Article  Google Scholar 

  15. Hashemi S.H., H. Mehrabani, A. Ahmadi-Savadkoohi Forced vibration of nanoplate on viscoelastic substrate with consideration of structural damping: an analytical solution. Compos. Struct. 133: 8–15 (2015)

    Article  Google Scholar 

  16. Rahmani O., S.S. Asemani, S.A.H. Hosseini Study the buckling of functionally graded nanobeams in elastic medium with surface effects based on a nonlocal theory. J. Comput. Theor. Nanosci. 12(10), 3162-3170 (2015)

    Article  Google Scholar 

  17. Hosseini S. A. H., O. Rahmani Surface effects on buckling of double nanobeam system based on nonlocal Timoshenko model. Int. J. Struct. Stab. Dyn. 16: 1550077 (2016)

    Article  MathSciNet  Google Scholar 

  18. Rahmani O., S.A.H. Hosseini, H. Hayati Frequency analysis of curved nano-sandwich structure based on a nonlocal model. Mod. Phys. Lett. B 30(10), 1650136 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. Sun C.T., H. Zhang Size-dependent elastic moduli of platelike nanomaterials. J. Appl. Phys. 93(2), 1212–1218 (2003)

    Article  ADS  Google Scholar 

  20. Eringen A.C. Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1-16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eringen A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  ADS  Google Scholar 

  22. Eringen A.C. Nonlocal continuum field theories. (Springer, Berlin, 2002)

    MATH  Google Scholar 

  23. Peddieson John, G.R. Buchanan, Richard P. McNitt. "Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41.3 : 305–312 (2003)

    Google Scholar 

  24. Lee H.-L., W.-J. Chang Frequency analysis of carbon-nanotube-based mass sensor using non-local Timoshenko beam theory. IET Micro. Nano Lett. 7(1), 86–89 (2012)

    Article  Google Scholar 

  25. Pirmohammadi A.A. et al. Modeling and active vibration suppression of a single-walled carbon nanotube subjected to a moving harmonic load based on a nonlocal elasticity theory. Appl. Phys. A 117(3), 1547–1555 (2014)

    Article  Google Scholar 

  26. Pourseifi M., O. Rahmani, S.A.H. Hoseini Active vibration control of nanotube structures under a moving nanoparticle based on the nonlocal continuum theories. Meccanica 50(5), 1351–1369 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Thai H.-T. A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52: 56–64 (2012)

    Article  MathSciNet  Google Scholar 

  28. Thai H.-T., S.-E. Kim A review of theories for the modeling and analysis of functionally graded plates and shells. Compos. Struct. 128: 70–86 (2015)

    Article  Google Scholar 

  29. Ansari R., R. Gholami, M.A. Darabi Thermal buckling analysis of embedded single-walled carbon nanotubes with arbitrary boundary conditions using the nonlocal Timoshenko beam theory. J. Therm. Stress. 34(12): 1271–1281 (2011)

    Article  Google Scholar 

  30. Ansari R., A. Shahabodini, H. Rouhi Prediction of the biaxial buckling and vibration behavior of graphene via a nonlocal atomistic-based plate theory. Compos. Struct. 95: 88–94 (2013)

    Article  Google Scholar 

  31. Ansari R., R. Gholami, H. Rouhi Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory. Compos. Struct. 126: 216–226 (2015)

    Article  Google Scholar 

  32. Arani A.G., et al. Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method. Phys. B Condens. Matter. 407(13), 2549–2555 (2012)

    Article  ADS  Google Scholar 

  33. Rahmanian M., et al. Free vibrations analysis of carbon nanotubes resting on Winkler foundations based on nonlocal models. Phys. B Condens. Matter. 484: 83–94 (2016)

    Article  ADS  Google Scholar 

  34. Niknam H., M.M. Aghdam A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Compos. Struct. 119: 452–462 (2015)

    Article  Google Scholar 

  35. Şimşek M. Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory. Compos. Part B Eng. 56: 621–628 (2014)

    Article  Google Scholar 

  36. Bourada M., et al. A new simple shear and normal deformations theory for functionally graded beams. Steel Compos. Struct. 18(2), 409–423 (2015)

    Article  Google Scholar 

  37. Hebali H., et al. New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. J. Eng. Mech. 140(2), 374–383 (2014)

    Article  Google Scholar 

  38. Tounsi A., M.S.A. Houari, A. Bessaim A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate. STRUCT. ENG. MECH. 60(4), 547–565 (2016)

    Article  Google Scholar 

  39. Bennoun M., M.S.A. Houari, A. Tounsi A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates. Mech. Adv. Mater. Struct. 23(4), 423–431 (2016)

    Article  Google Scholar 

  40. Yahia S.A., et al. Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct. Eng. Mech. 53(6), 1143–1165 (2015)

    Article  Google Scholar 

  41. Hamidi A., et al. A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates. Steel Compos. Struct. 18(1), 235–253 (2015)

    Article  Google Scholar 

  42. Belabed Z., et al. An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos. Part B Eng. 60: 274–283 (2014)

    Article  Google Scholar 

  43. Mahi A., A. Tounsi A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl. Math. Model. 39(9), 2489–2508 (2015)

    Article  MathSciNet  Google Scholar 

  44. Meziane M.A.A., H.H. Abdelaziz, A. Tounsi An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions. J. Sandw. Struct. Mater. 16(3), 293–318 (2014)

    Article  Google Scholar 

  45. Bousahla A.A., et al. A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates. Int. J. Comput. Methods 11(06), 1350082 (2014)

    Article  MathSciNet  Google Scholar 

  46. Bellifa H., et al. Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. J. Braz. Soc. Mech. Sci. Eng. 38(1), 265–275 (2016)

    Article  Google Scholar 

  47. Tounsi A., M.S.A. Houari, S. Benyoucef A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerosp. Sci. Technol. 24(1), 209–220 (2013)

    Article  Google Scholar 

  48. Zidi Mohamed, et al. Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory. Aeros. Sci. Technol. 34: 24–34 (2014)

    Article  Google Scholar 

  49. Bounouara F., et al. A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel Compos. Struct. 20(2), 227–249 (2016)

    Article  Google Scholar 

  50. Belkorissat I., et al. On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model. Steel Compos. Struct. 18(4), 1063–1081 (2015)

    Article  Google Scholar 

  51. Tounsi A., et al. Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes. Adv. Nano Res. 1(1), 1–11 (2013)

    Article  MathSciNet  Google Scholar 

  52. Besseghier A., et al. Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix. Adv. Nano Res. 3(1), 29–37 (2015)

    Article  Google Scholar 

  53. Benguediab S., et al. Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes. Compos. Part B Eng. 57: 21–24 (2014)

    Article  Google Scholar 

  54. Chaht F.L., et al. Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel Compos. Struct. 18(2), 425–442 (2015)

    Article  Google Scholar 

  55. Ahouel M., et al. Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept. Steel. Compos. Struct. 20(5), 963–981

  56. Zemri A., et al. A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory. Struct. Eng. Mech. 54(4), 693–710 (2015)

    Article  Google Scholar 

  57. Al-Basyouni K.S., A. Tounsi, S.R. Mahmoud Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position. Compos. Struct. 125: 621–630 (2015)

    Article  Google Scholar 

  58. Houari M.S.A., Tounsi A., Bessaim A., Mahmoud S.R. A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates. Steel Compos. Struct. 22(2), 257–276 (2016)

    Article  Google Scholar 

  59. Bourada F., Amara K., Tounsi A. Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory. Steel Compos. Struct. 21(6), 1287–1306 (2016)

    Article  Google Scholar 

  60. Gupta A., et al. Dynamic analysis of fixed-free single-walled carbon nanotube-based bio-sensors because of various viruses. IET Nanobiotechnol. 6(3), 115–121 (2012)

    Article  Google Scholar 

  61. Panchal M.B., S.H. Upadhyay Single walled boron nitride nanotube-based biosensor: an atomistic finite element modelling approach. IET Nanobiotechnol. 8(3), 149–156 (2014)

    Article  Google Scholar 

  62. Trivedi S., et al. Biosensing application of multiwall boron nitride nanotube-based nanoresonator for detecting various viruses. IET Nanobiotechnol. 9(5), 259–263 (2015)

    Article  Google Scholar 

  63. Chen X., V. Pée Catalytic mechanisms, basic roles, and biotechnological and environmental significance of halogenating enzymes. Acta Biochim. et Biophys. Sinica 40(3), 183–193 (2008)

    Article  Google Scholar 

  64. Zhou J.K. (1986) Differential transformation and its applications for electrical circuits, pp. 1279–1289

  65. Catal S. Solution of free vibration equations of beam on elastic soil by using differential transform method. Appl. Math. Model. 32(9), 1744–1757 (2008)

    Article  MATH  Google Scholar 

  66. Ho S.H., C.K. Chen Analysis of general elastically end restrained non-uniform beams using differential transform. Appl. Math. Model. 22(4), 219–234 (1998)

    Article  Google Scholar 

  67. Mei C. Application of differential transformation technique to free vibration analysis of a centrifugally stiffened beam. Comput. Struct. 86(11), 1280–1284 (2008)

    Article  Google Scholar 

  68. Özdemir Ö., M.O. Kaya Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli–Euler beam by differential transform method. J. Sound Vib. 289(1), 413–420 (2006)

    Article  ADS  MATH  Google Scholar 

  69. Ozgumus O.O., M.O. Kaya Flapwise bending vibration analysis of double tapered rotating Euler–Bernoulli beam by using the differential transform method. Meccanica 41(6), 661–670 (2006)

    Article  MATH  Google Scholar 

  70. Ni Q., Z.L. Zhang, L. Wang Application of the differential transformation method to vibration analysis of pipes conveying fluid. Appl. Math. Comput. 217(16), 7028–7038 (2011)

    MathSciNet  MATH  Google Scholar 

  71. Joneidi A.A., D.D. Ganji, M. Babaelahi Differential transformation method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity. Int. Commun. Heat Mass Transfer 36(7), 757–762 (2009)

    Article  Google Scholar 

  72. Rashidi M.M., S.A.M. Pour A novel analytical solution of steady flow over a rotating disk in porous medium with heat transfer by DTM-PAD. Afr. J. Math. Comput. Sci. Res. 3(6), 93–100 (2010)

    Google Scholar 

  73. Eltaher M.A., A.E. Alshorbagy, F.F. Mahmoud Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Appl. Math. Model. 37(7), 4787–4797 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misagh Zarepour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarepour, M., Hosseini, S.A. & Ghadiri, M. Free vibration investigation of nano mass sensor using differential transformation method. Appl. Phys. A 123, 181 (2017). https://doi.org/10.1007/s00339-017-0796-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0796-6

Keywords

Navigation