Skip to main content
Log in

Torsional static and vibration analysis of functionally graded nanotube with bi-Helmholtz kernel based stress-driven nonlocal integral model

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A torsional static and free vibration analysis of the functionally graded nanotube (FGNT) composed of two materials varying continuously according to the power-law along the radial direction is performed using the bi-Helmholtz kernel based stress-driven nonlocal integral model. The differential governing equation and boundary conditions are deduced on the basis of Hamilton’s principle, and the constitutive relationship is expressed as an integral equation with the bi-Helmholtz kernel. Several nominal variables are introduced to simplify the differential governing equation, integral constitutive equation, and boundary conditions. Rather than transforming the constitutive equation from integral to differential forms, the Laplace transformation is used directly to solve the integro-differential equations. The explicit expression for nominal torsional rotation and torque contains four unknown constants, which can be determined with the help of two boundary conditions and two extra constraints from the integral constitutive relation. A few benchmarked examples are solved to illustrate the nonlocal influence on the static torsion of a clamped-clamped (CC) FGNT under torsional constraints and a clamped-free (CF) FGNT under concentrated and uniformly distributed torques as well as the torsional free vibration of an FGNT under different boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YANG, B., GAO, X., and LI, C. A novel micromachined Z-axis torsional accelerometer based on the tunneling magnetoresistive effect. Micromachines, 11(4), 422 (2020)

    Article  Google Scholar 

  2. BUTLER, M. C., NORTON, V. A., and WEITEKAMP, D. P. Nanoscale torsional resonator for polarization and spectroscopy of nuclear spins. Physical Review Letters, 105(17), 177601 (2010)

    Article  Google Scholar 

  3. GUO, J. G. and ZHAO, Y. P. Dynamic stability of electrostatic torsional actuators with van der Waals effect. International Journal of Solids and Structures, 43(3/4), 675–685 (2006)

    Article  MATH  Google Scholar 

  4. LI, H. and CHEN, Z. B. Torsional sensors for conical shell in torsional vibrations.Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 224(C11), 2382–2389 (2010)

    Article  Google Scholar 

  5. ANTONIO, D., DOLZ, M. I., and PASTORIZA, H. Micromechanical magnetometer using an all-silicon nonlinear torsional resonator. Applied Physics Letters, 95(13), 133505 (2009)

    Article  Google Scholar 

  6. VENKATESH, C., BHAT, N., VINOY, K. J., and GRANDHI, S. Microelectromechanical torsional varactors with low parasitic capacitances and high dynamic range. Journal of Micro-Nanolithography MEMS and MOEMS, 11(1), 013006 (2012)

    Article  Google Scholar 

  7. LAM, D. C. C., YANG, F., CHONG, A. C. M., WANG, J., and TONG, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  8. CHEN, Y., DORGAN, B. L., Jr, MCILROY, D. N., and ASTON, D. E. On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires. Journal of Applied Physics, 100, 104301 (2006)

    Article  Google Scholar 

  9. MOTZ, C., WEYGAND, D., SENGER, J., and GUMBSCH, P. Micro-bending tests: a comparison between three-dimensional discrete dislocation dynamics simulations and experiments. Acta Materialia, 56(9), 1942–1955 (2008)

    Article  Google Scholar 

  10. MOHAMMADIMEHR, M., FARAHI, M. J., and ALIMIRZAEI, S. Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory. Applied Mathematics and Mechanics (English Edition), 37(10), 1375–1392 (2016) https://doi.org/10.1007/s10483-016-2138-9

    Article  MathSciNet  MATH  Google Scholar 

  11. RAVI, R., KANCHANA, C., and SIDDHESHWAR, P. G. Effects of second diffusing component and cross diffusion on primary and secondary thermoconvective instabilities in couple stress liquids. Applied Mathematics and Mechanics (English Edition), 38(11), 1579–1600 (2017) https://doi.org/10.1007/s10483-017-2280-9

    Article  MathSciNet  Google Scholar 

  12. ZHANG, B., SHEN, H., LIU, J., WANG, Y., and ZHANG, Y. Deep postbuckling and nonlinear bending behaviors of nanobeams with nonlocal and strain gradient effects. Applied Mathematics and Mechanics (English Edition), 40(4), 515–548 (2019) https://doi.org/10.1007/s10483-019-2482-9

    Article  MathSciNet  MATH  Google Scholar 

  13. WANG, J., ZHU, Y., ZHANG, B., SHEN, H., and LIU, J. Nonlocal and strain gradient effects on nonlinear forced vibration of axially moving nanobeams under internal resonance conditions. Applied Mathematics and Mechanics (English Edition), 41(2), 261–278 (2020) https://doi.org/10.1007/s10483-020-2565-5

    Article  Google Scholar 

  14. TSIATAS, G. C. and KATSIKADELIS, J. T. A new microstructure-dependent Saint-Venant torsion model based on a modified couple stress theory. European Journal of Mechanics A-Solids, 30(5), 741–747 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. YAYLI, M. O. Torsional vibrations of restrained nanotubes using modified couple stress theory. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 24(8), 3425–3435 (2018)

    Google Scholar 

  16. SETOODEH, A. R., REZAEI, M., and SHAHRI, M. R. Z. Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory. Applied Mathematics and Mechanics (English Edition), 37(6), 725–740 (2016) https://doi.org/10.1007/s10483-016-2085-6

    Article  MathSciNet  MATH  Google Scholar 

  17. BARATI, A., ADELI, M. M., and HADI, A. Static torsion of bi-directional functionally graded microtube based on the couple stress theory under magnetic field. International Journal of Applied Mechanics, 12(2), 2050021 (2020)

    Article  Google Scholar 

  18. KAHROBAIYAN, M. H., TAJALLI, S. A., MOVAHHEDY, M. R., AKBARI, J., and AHMADIAN, M. T. Torsion of strain gradient bars. International Journal of Engineering Science, 49(9), 856–866 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. BEHESHTI, A. A numerical analysis of Saint-Venant torsion in strain-gradient bars. European Journal of Mechanics A-Solids, 70, 181–190 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. ERINGEN, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  21. FARAJI-OSKOUIE, M., NOROUZZADEH, A., ANSARI, R., and ROUHI, H. Bending of smallscale Timoshenko beams based on the integral/differential nonlocal-micropolar elasticity theory: a finite element approach. Applied Mathematics and Mechanics (English Edition), 40(6), 767–782 (2019) https://doi.org/10.1007/s10483-019-2491-9

    Article  MathSciNet  MATH  Google Scholar 

  22. LU, L., ZHU, L., GUO, X., ZHAO, J., and LIU, G. A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells. Applied Mathematics and Mechanics (English Edition), 40(12), 1695–1722 (2019) https://doi.org/10.1007/s10483-019-2549-7

    Article  MATH  Google Scholar 

  23. JIANG, P., QING, H., and GAO, C. Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model. Applied Mathematics and Mechanics (English Edition), 41(2), 207–232 (2020) https://doi.org/10.1007/s10483-020-2569-6

    Article  Google Scholar 

  24. ZENG, S., WANG, K., WANG, B., and WU, J. Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory. Applied Mathematics and Mechanics (English Edition), 41(6), 859–880 (2020) https://doi.org/10.1007/s10483-020-2620-8

    Article  Google Scholar 

  25. NARENDAR, S. Spectral finite element and nonlocal continuum mechanics based formulation for torsional propagation in nanorods. Finite Elements in Analysis and Design, 62, 65–75 (2012)

    Article  MathSciNet  Google Scholar 

  26. YAYLI, M. O. Torsion of nonlocal bars with equilateral triangle cross sections. Journal of Computational and Theoretical Nanoscience, 10(2), 376–379 (2013)

    Article  Google Scholar 

  27. ISLAM, Z. M., JIA, P., and LIM, C. W. torsional wave propagation and vibration of circular nanostructures based on nonlocal elasticity theory. International Journal of Applied Mechanics, 6(2), 1450011 (2014)

    Article  Google Scholar 

  28. LIM, C. W., ISLAM, M. Z., and ZHANG, G. A nonlocal finite element method for torsional statics and dynamics of circular nanostructures. International Journal of Mechanical Sciences, 94-95, 232–243 (2015)

    Article  Google Scholar 

  29. ARDA, M. and AYDOGDU, M. Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity. Applied Physics A-Materials Science and Processing, 122(3), 219 (2016)

    Article  Google Scholar 

  30. AYDOGDU, M. and ARDA, M. Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity. International Journal of Mechanics and Materials in Design, 12(1), 71–84 (2016)

    Article  Google Scholar 

  31. FEO, L. and PENNA, R. A note on torsion of nonlocal composite nanobeams. Modelling and Simulation in Engineering, 2016, 5934814 (2016)

    Google Scholar 

  32. NUMANOGLU, H. M. and CIVALEK, O. On the torsional vibration of nanorods surrounded by elastic matrix via nonlocal FEM. International Journal of Mechanical Sciences, 161, 105076 (2019)

    Article  Google Scholar 

  33. ROMANO, G., BARRETTA, R., DIACO, M., and DE SCIARRA, F. M. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. International Journal of Mechanical Sciences, 121, 151–156 (2017)

    Article  Google Scholar 

  34. BENVENUTI, E. and SIMONE, A. One-dimensional nonlocal and gradient elasticity: closed-form solution and size effect. Mechanics Research Communications, 48, 46–51 (2013)

    Article  Google Scholar 

  35. ZHANG, P., QING, H., and GAO, C. Theoretical analysis for static bending of circular Euler-Bernoulli beam using local and Eringen’s nonlocal integral mixed model. Zeitschrift für Angewandte Mathematik und Mechanik, 99(8), e201800329 (2019)

    Article  MathSciNet  Google Scholar 

  36. ZHANG, P., QING, H., and GAO, C. Analytical solutions of static bending of curved Timoshenko microbeams using Eringen’s two-phase local/nonlocal integral model. Zeitschrift für Angewandte Mathematik und Mechanik, 100(7), e201900207 (2020)

    Article  MathSciNet  Google Scholar 

  37. REDDY, J. N. and PANG, S. D. Nonlocal continuum theories of beams for the analysis of carbon nanotubes. Journal of Applied Physics, 103(2), 023511 (2008)

    Article  Google Scholar 

  38. LIM, C. W., LI, C., and YU, J. L. Free torsional vibration of nanotubes based on nonlocal stress theory. Journal of Sound and Vibration, 331(12), 2798–2808 (2012)

    Article  Google Scholar 

  39. LI, C. A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries. Composite Structures, 118, 607–621 (2014)

    Article  Google Scholar 

  40. ADELI, M. M., HADI, A., HOSSEINI, M., and GORGANI, H. H. Torsional vibration of nanocone based on nonlocal strain gradient elasticity theory. European Physical Journal Plus, 132(9), 393 (2017)

    Article  Google Scholar 

  41. APUZZO, A., BARRETTA, R., CANADIJA, M., FEO, L., LUCIANO, R., and DE SCIARRA, F. M. A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation. Composites Part B-Engineering, 108, 315–324 (2017)

    Article  Google Scholar 

  42. BARRETTA, R., DIACO, M., FEO, L., LUCIANO, R., DE SCIARRA, F. M., and PENNA, R. Stress-driven integral elastic theory for torsion of nano-beams. Mechanics Research Communications, 87, 35–41 (2018)

    Article  Google Scholar 

  43. ZHU, X. and LI, L. Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity. International Journal of Mechanical Sciences, 133, 639–650 (2017)

    Article  Google Scholar 

  44. BARRETTA, R., FAGHIDIAN, S. A., DE SCIARRA, F. M., PENNA, R., and PINNOLA, F. P. On torsion of nonlocal Lam strain gradient FG elastic beams. Composite Structures, 233, 111550 (2020)

    Article  Google Scholar 

  45. NOROOZI, R., BARATI, A., KAZEMI, A., NOROUZI, S., and HADI, A. Torsional vibration analysis of bi-directional FG nano-cone with arbitrary cross-section based on nonlocal strain gradient elasticity. Advances in Nano Research, 8(1), 13–24 (2020)

    Google Scholar 

  46. ROMANO, G. and BARRETTA, R. Nonlocal elasticity in nanobeams: the stress-driven integral model. International Journal of Engineering Science, 115, 14–27 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. LAZAR, M., MAUGIN, G. A., and AIFANTIS, E. C. On a theory of nonlocal elasticity of bi-Helmholtz type and some applications. International Journal of Solids and Structures, 43(6), 1404–1421 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. BIAN, P. B., QING, H., and GAO, C. F. One-dimensional stress-driven nonlocal integral model with bi-Helmholtz kernel: close form solution and consistent size effect. Applied Mathematical Modelling, 89, 400–412 (2021)

    Article  MathSciNet  Google Scholar 

  49. QING, H. Automatic generation of 2D micromechanical finite element model of siliconcarbide/aluminum metal matrix composites: effects of the boundary conditions. Materials and Design, 44, 446–453 (2013)

    Article  Google Scholar 

  50. SIMSEK, M. and REDDY, J. N. A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory. Composite Structures, 101, 47–58 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Qing.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11672131) and the Priority Academic Program Development of Jiangsu Higher Education Institutions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, P., Qing, H. Torsional static and vibration analysis of functionally graded nanotube with bi-Helmholtz kernel based stress-driven nonlocal integral model. Appl. Math. Mech.-Engl. Ed. 42, 425–440 (2021). https://doi.org/10.1007/s10483-021-2708-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2708-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation