Skip to main content
Log in

Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A nonlocal strain gradient theory (NSGT) accounts for not only the nongradient nonlocal elastic stress but also the nonlocality of higher-order strain gradients, which makes it benefit from both hardening and softening effects in small-scale structures. In this study, based on the NSGT, an analytical model for the vibration behavior of a piezoelectric sandwich nanobeam is developed with consideration of flexoelectricity. The sandwich nanobeam consists of two piezoelectric sheets and a non-piezoelectric core. The governing equation of vibration of the sandwich beam is obtained by the Hamiltonian principle. The natural vibration frequency of the nanobeam is calculated for the simply supported (SS) boundary, the clamped-clamped (CC) boundary, the clamped-free (CF) boundary, and the clamped-simply supported (CS) boundary. Effects of geometric dimensions, length scale parameters, nonlocal parameters, piezoelectric constants, as well as the flexoelectric constants are discussed. Results demonstrate that both the flexoelectric and piezoelectric constants enhance the vibration frequency of the nanobeam. The nonlocal stress decreases the natural vibration frequency, while the strain gradient increases the natural vibration frequency. The natural vibration frequency based on the NSGT can be increased or decreased, depending on the value of the nonlocal parameter to length scale parameter ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG, B. L., GUO, Y. B., and ZHANG, C. W. Cracking and thermal shock resistance of a Bi2Te3 based thermoelectric material. Engineering Fracture Mechanics, 152, 1–9 (2016)

    Article  Google Scholar 

  2. XU, H. B., ZHANG, C. W., LI, H., and OU, J. P. Real-time hybrid simulation approach for performance validation of structural active control systems: a linear motor actuator based active mass driver case study. Structural Control and Health Monitoring, 21(4), 574–589 (2014)

    Article  Google Scholar 

  3. SUN, L., LI, C., LI, J., ZHANG, C. W., and DING, X. S. Strain transfer analysis of a clamped fiber Bragg grating sensor. Applied Sciences, 7(2), 188 (2017)

    Article  Google Scholar 

  4. ZHANG, C. W. and OU, J. P. Control strategies and experimental verifications of the electromagnetic mass damper system for structural vibration control. Earthquake Engineering and Engineering Vibration, 7(2), 181–192 (2008)

    Article  MathSciNet  Google Scholar 

  5. ZHANG, C. W. Control force characteristics of different control strategies for the wind-excited 76-story benchmark building structure. Advances in Structural Engineering, 17(4), 543–559 (2014)

    Article  Google Scholar 

  6. XUE, Q. C., ZHANG, C. W., HE, J., ZOU, G. P., and ZHANG, J. C. An updated analytical structural pounding force model based on viscoelasticity of materials. Shock and Vibration, 2016, 2596923 (2016)

    Google Scholar 

  7. XU, H. B., ZHANG, C. W., LI, H., TAN, P., OU, J. P., and ZHOU, F. L. Active mass driver control system for suppressing wind-induced vibration of the Canton Tower. Smart Structures and Systems, 13(2), 281–303 (2014)

    Article  Google Scholar 

  8. POURKIAEE, S. M., KHADEM, S. E., SHAHGHOLI, M., and BAB, S. Nonlinear modal interactions and bifurcations of a piezoelectric nanoresonator with three-to-one internal resonances incorporating surface effects and van der Waals dissipation forces. Nonlinear Dynamics, 88(3), 1785–1816 (2017)

    Article  Google Scholar 

  9. HSU, Y. J., JIA, Z., and KYMISSIS, I. A locally amplified strain sensor based on a piezoelectric polymer and organic field-effect transistors. IEEE Transactions on Electron Devices, 58(3), 910–917 (2011)

    Article  Google Scholar 

  10. CHOI, H. W., JEON, C. W., LIU, C., WATSON, I. M., DAWSON, M. D., EDWARDS, P. R., MARTIN, R. W., TRIPATHY, S., and CHUA, S. J. InGaN nano-ring structures for high-efficiency light emitting diodes. Applied Physics Letters, 86(2), 021101 (2004)

    Article  Google Scholar 

  11. WANG, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 7(11), 9533–9557 (2013)

    Article  Google Scholar 

  12. SONG, M., ZHANG, Y., PENG, M. Z., and ZHAI, J. Y. Low frequency wideband nano generators for energy harvesting from natural environment. Nano Energy, 6, 66–72 (2014)

    Article  Google Scholar 

  13. MOHAMMADIMEHR, M. and ROSTAMI, R. Bending and vibration analyses of a rotating sandwich cylindrical shell considering nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields. Applied Mathematics and Mechanics (English Edition), 39(2), 1–22 (2018) https://doi.org/10.1007/s10483-018-2301-6

    Article  MathSciNet  MATH  Google Scholar 

  14. ZHOU, Y. G., CHEN, Y. M., and DING, H. J. Analytical modeling of sandwich beam for piezoelectric bender elements. Applied Mathematics and Mechanics (English Edition), 28(12), 1581–1586 (2007) https://doi.org/10.1007/s10483-007-1204-z

    Article  MATH  Google Scholar 

  15. ZHAO, X., QIAN, Z. H., LIU, J. X., and GAO, C. F. Effects of electric/magnetic impact on the transient fracture of interface crack in piezoelectric-piezomagnetic sandwich structure: anti-plane case. Applied Mathematics and Mechanics (English Edition), 41(1), 139–156 (2020) https://doi.org/10.1007/s10483-020-2552-5

    Article  Google Scholar 

  16. AREFI, M., KARROUBI, R., and IRANI-RAHAGHI, M. Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer. Applied Mathematics and Mechanics (English Edition), 37(7), 821–834 (2016) https://doi.org/10.1007/s10483-016-2098-9

    Article  MathSciNet  Google Scholar 

  17. EBRAHIMI, F. and KARIMIASL, M. Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams. Mechanics of Advanced Materials and Structures, 25(11), 943–952 (2018)

    Article  Google Scholar 

  18. AMIR, S., KHORASANI, M., and BABAAKBAR-ZAREI, H. Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and firstorder shear deformation theory. Journal of Sandwich Structures and Materials (2018) https://doi.org/10.1177/1099636218795385

  19. KARAMI, B., SHAHSAVARI, D., LI, L., KARAMI, M., and JANGHORBAN, M. Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(1), 287–301 (2019)

    MATH  Google Scholar 

  20. ARANI, A. G., BABAAKBAR-ZAREI, H., and HAGHPARAST, E. Vibration response of viscoelastic sandwich plate with magnetorheological fluid core and functionally graded-piezoelectric nanocomposite face sheets. Journal of Vibration and Control, 24(21), 5169–5185 (2018)

    MathSciNet  Google Scholar 

  21. ZENG, S., WANG, B. L., and WANG, K. F. Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect. Composite Structures, 207, 340–351 (2019)

    Article  Google Scholar 

  22. YUE, Y. M., XU, K. Y., and CHEN, T. A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects. Composite Structures, 136, 278–286 (2016)

    Article  Google Scholar 

  23. WANG, K. F. and WANG, B. L. An analytical model for nanoscale unimorph piezoelectric energy harvesters with flexoelectric effect. Composite Structures, 153, 253–261 (2016)

    Article  Google Scholar 

  24. WANG, K. F., WANG, B. L., and ZENG, S. Analysis of an array of flexoelectric layered nanobeams for vibration energy harvesting. Composite Structures, 187, 48–57 (2018)

    Article  Google Scholar 

  25. RUPA, N. S. and RAY, M. C. Analysis of flexoelectric response in nanobeams using nonlocal theory of elasticity. International Journal of Mechanics and Materials in Design, 13(3), 453–467 (2017)

    Article  Google Scholar 

  26. WANG, K. F., WANG, B. L., and ZHANG, C. W. Surface energy and thermal stress effect on nonlinear vibration of electrostatically actuated circular micro-/nanoplates based on modified couple stress theory. Acta Mechanica, 228(1), 129–140 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. GHADIRI, M., SHAFIEI, N., and SAFARPOUR, H. Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity. Microsystem Technologies, 23(4), 1045–1065 (2017)

    Article  Google Scholar 

  28. SHAFIEI, N. and KAZEMI, M. Nonlinear buckling of functionally graded nano-/micro-scaled porous beams. Composite Structures, 178, 483–492 (2017)

    Article  Google Scholar 

  29. SHAFIEI, N., MOUSAVI, A., and GHADIRI, M. On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams. International Journal of Engineering Science, 106, 42–56 (2016)

    Article  MATH  Google Scholar 

  30. AZIMI, M., MIRJAVADI, S. S., SHAFIEI, N., HAMOUDA, A. M. S., and DAVARI, E. Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution. Mechanics of Advanced Materials and Structures, 25(6), 467–480 (2018)

    Article  Google Scholar 

  31. AKBAȘ, Ș. D. Forced vibration analysis of functionally graded porous deep beams. Composite Structures, 186, 293–302 (2018)

    Article  Google Scholar 

  32. SAHMANI, S., AGHDAM, M. M., and AKBARZADEH, A. H. Size-dependent buckling and post-buckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load. Materials & Design, 105, 341–351 (2016)

    Article  Google Scholar 

  33. SARVESTANI, H. Y., AKBARZADEH, A. H., and MIRABOLGHASEMI, A. Structural analysis of size-dependent functionally graded doubly-curved panels with engineered microarchitectures. Acta Mechanica, 229, 2675–2701 (2018)

    Article  Google Scholar 

  34. SAHMANI, S., MOHAMMADI-AGHDAM, M., and AKBARZADEH, A. Surface stress size dependency in nonlinear instability of imperfect piezoelectric nanoshells under combination of hydrostatic pressure and lateral electric field. AUT Journal of Mechanical Engineering, 2(2), 177–190 (2018)

    Google Scholar 

  35. SHAHVERDI, H. and BARATI, M. R. Vibration analysis of porous functionally graded nanoplates. International Journal of Engineering Science, 120, 82–99 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. ROMANO, G., BARRETTA, R., DIACO, M., and MAROTTI DE SCIARRA, F. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. International Journal of Mechanical Sciences, 121, 151–156 (2017)

    Article  Google Scholar 

  37. KOUTSOUMARIS, C. C., VOGIATZIS, G. G., THEODOROU, D. N., and TSAMASPHYROS, G. J. Application of bi-Helmholtz nonlocal elasticity and molecular simulations to the dynamical response of carbon nanotubes. AIP Conference Proceedings, 1702(1), 190011 (2015)

    Article  Google Scholar 

  38. SHAAT, M. and ABDELKEFI, A. New insights on the applicability of Eringen’s nonlocal theory. International Journal of Mechanical Sciences, 121, 67–75 (2017)

    Article  Google Scholar 

  39. LIM, C. W., ZHANG, G., and REDDY, J. N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. SAHMANI, S. and FATTAHI, A. M. Small scale effects on buckling and postbuckling behaviors of axially loaded FGM nanoshells based on nonlocal strain gradient elasticity theory. Applied Mathematics and Mechanics (English Edition), 39(4), 561–580 (2018) https://doi.org/10.1007/s10483-018-2321-8

    Article  MathSciNet  MATH  Google Scholar 

  41. SHARIFI, Z., KHORDAD, R., GHARAATI, A., and FOROZANI, G. An analytical study of vibration in functionally graded piezoelectric nanoplates: nonlocal strain gradient theory. Applied Mathematics and Mechanics (English Edition), 40(12), 1723–1740 (2019) https://doi.org/10.1007/s10483-019-2545-8

    Article  MATH  Google Scholar 

  42. WANG, J., ZHU, Y. L., ZHANG, B., SHEN, H. M., and LIU, J. Nonlocal and strain gradient effects on nonlinear forced vibration of axially moving nanobeams under internal resonance conditions. Applied Mathematics and Mechanics (English Edition), 41(2), 261–278 (2020) https://doi.org/10.1007/s10483-020-2565-5

    Article  Google Scholar 

  43. ZHANG, B., SHEN, H. M., LIU, J., WANG, Y. X., and ZHANG, Y. R. Deep postbuckling and nonlinear bending behaviors of nanobeams with nonlocal and strain gradient effects. Applied Mathematics and Mechanics (English Edition), 40(4), 515–548 (2019) https://doi.org/10.1007/s10483-019-2482-9

    Article  MathSciNet  MATH  Google Scholar 

  44. LU, L., GUO, X. M., and ZHAO, J. Z. A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects. Applied Mathematical Modelling, 68, 583–602 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. LU, L., ZHU, L., GUO, X.M., ZHAO, J. Z., and LIU, G. Z. A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells. Applied Mathematics and Mechanics (English Edition), 40(12), 1695–1722 (2019) https://doi.org/10.1007/s10483-019-2549-7

    Article  MATH  Google Scholar 

  46. SAHMANI, S. and AGHDAM, M. M. A nonlocal strain gradient hyperbolic shear deformable shell model for radial postbuckling analysis of functionally graded multilayer GPLRC nanoshells. Composite Structures, 178, 97–109 (2017)

    Article  Google Scholar 

  47. EBRAHIMI, F. and BARATI, M. R. A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams. Composite Structures, 159, 174–182 (2017)

    Article  Google Scholar 

  48. EBRAHIMI, F., BARATI, M. R., and DABBAGH, A. A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. International Journal of Engineering Science, 107, 169–182 (2016)

    Article  Google Scholar 

  49. LU, L., GUO, X. M., and ZHAO, J. Z. A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms. International Journal of Engineering Science, 119, 265–277 (2017)

    Article  Google Scholar 

  50. SAHMANI, S., AGHDAM, M. M., and RABCZUK, T. A unified nonlocal strain gradient plate model for nonlinear axial instability of functionally graded porous micro/nano-plates reinforced with graphene platelets. Materials Research Express, 5, 045048 (2018)

    Article  Google Scholar 

  51. LIANG, X., HU, S. L., and SHEN, S. P. Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Materials and Structures, 23(3), 035020 (2014)

    Article  Google Scholar 

  52. MEHRALIAN, F. and BENI, Y. T. Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(1), 27 (2018)

    Article  Google Scholar 

  53. ERINGEN, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  54. LU, L., GUO, X. M., and ZHAO, J. Z. Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. International Journal of Engineering Science, 116, 12–24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. CHANTHANUMATAPORN, S. and WATANABE, N. Free vibration of a light sandwich beam accounting for ambient air. Journal of Vibration and Control, 24(16), 3658–3675 (2018)

    Article  MathSciNet  Google Scholar 

  56. KE, L. L., WANG, Y. S., and WANG, Z. D. Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Composite Structures, 94, 2038–2047 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Zeng.

Additional information

Citation: ZENG, S., WANG, K. F., WANG, B. L., and WU, J. W. Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory. Applied Mathematics and Mechanics (English Edition), 41(6), 859–880 (2020) https://doi.org/10.1007/s10483-020-2620-8

Project supported by the National Natural Science Foundation of China (Nos. 51965041, 1197237, and 11602072)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, S., Wang, K., Wang, B. et al. Vibration analysis of piezoelectric sandwich nanobeam with flexoelectricity based on nonlocal strain gradient theory. Appl. Math. Mech.-Engl. Ed. 41, 859–880 (2020). https://doi.org/10.1007/s10483-020-2620-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2620-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation