Skip to main content
Log in

Three-dimensional stretched flow of Jeffrey fluid with variable thermal conductivity and thermal radiation

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed for the velocity and temperature fields. Graphs for the velocity and temperature are plotted to examine the behaviors with different parameters. Numerical values of the local Nusselt number are presented and discussed. The present results are compared with the existing limiting solutions, showing good agreement with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jamil, M., Khan, N. A., and Rauf, A. Oscillating flows of fractionalized second grade fluid. Mathematical Physics, 2012, 1–23 (2012) DOI 10.5402/2012/908386

    Google Scholar 

  2. Athar, M., Fetecau, C., Kamran, M., Sohail, A., and Imran, M. Exact solutions for unsteady axial Couette flow of a fractional Maxwell fluid due to an accelerated shear. Nonlinear Analysis: Modelling and Control, 16, 135–151 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Qi, H. and Jin, H. Unsteady helical flows of a generalized Oldroyd-B fluid with fractional derivative. Nonlinear Analysis: Real World Applications, 10, 2700–2708 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Rashidi, M. M., Pour, S. A. M., and Abbasbandy, S. Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation. Communications in Nonlinear Science and Numerical Simulation, 16, 1874–1889 (2011)

    Article  Google Scholar 

  5. Hayat, T., Shehzad, S. A., and Alsaedi, A. Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid. Applied Mathematics and Mechanics (English Edition), 33, 1301–1312 (2012) DOI 10.1007/s10483-012-1623-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Motsa, S. S., Hayat, T., and Aldossary, O. M. MHD flow of upper-convected Maxwell fluid over porous stretching sheet using successive Taylor series linearization method. Applied Mathematics and Mechanics (English Edition), 33, 975–990 (2012) DOI 10.1007/s10483-012-1599-x

    Article  MathSciNet  MATH  Google Scholar 

  7. Vajravelu, K., Prasad, K. V., Sujatha, A., and Ng, C. O. MHD flow and mass transfer of chemically reactive upper convected Maxwell fluid past porous surface. Applied Mathematics and Mechanics (English Edition), 33, 899–910 (2012) DOI 10.1007/s10483-012-1593-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Kothandapani, M. and Srinivas, S. Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel. International Journal of Non-Linear Mechanics, 43, 915–924 (2008)

    Article  Google Scholar 

  9. Nadeem, S. and Akbar, N. S. Peristaltic flow of a Jeffrey fluid with variable viscosity in an asymmetric channel. Z. Naturforsch., 64a, 713–722 (2009)

    Google Scholar 

  10. Hayat, T., Shehzad, S. A., Qasim, M., and Obaidat, S. Thermal radiation effects on the mixed convection stagnation-point flow in a Jeffrey fluid. Z. Naturforsch., 66a, 606–614 (2011)

    Article  Google Scholar 

  11. Hayat, T., Shehzad, S. A., Qasim, M., and Obaidat, S. Radiative flow of Jeffrey fluid in a porous medium with power law heat flux and heat source. Nuclear Engineering and Design, 243, 15–19 (2012)

    Article  Google Scholar 

  12. Kay, W. M. Convective Heat and Mass Transfer, McGraw-Hill, New York (1966)

    Google Scholar 

  13. Cortell, R. Combined effects of viscous dissipation and thermal radiation on fluid flows over a non-linearly stretched permeable wall. Meccanica, 47, 769–781 (2012)

    Article  MathSciNet  Google Scholar 

  14. Pal, D. and Mondal, H. The influence of thermal radiation on hydromagnetic Darcy-Forchheimer mixed convection flow past a stretching sheet embedded in a porous medium. Meccanica, 46, 739–753 (2011)

    Article  Google Scholar 

  15. Ashraf, M., Asghar, S., and Hossain, M. M. Computational study of combined effects of conduction-radiation and hydromagnetics on natural convection flow past magnetized permeable plate. Applied Mathematics and Mechanics (English Edition), 33, 731–748 (2012) DOI 10.1007/s10483-012-1583-7

    Article  MathSciNet  Google Scholar 

  16. Anbuchezhian, N., Srinivasan, K., Chandrasekaran, K., and Kandasamy, R. Thermophoresis and Brownian motion effects on boundary layer flow of nanofluid in presence of thermal stratification due to solar energy. Applied Mathematics and Mechanics (English Edition), 33, 765–780 (2012) DOI 10.1007/s10483-012-1585-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Mahmoud, M. A. A. and Waheed, S. E. Variable fluid properties and thermal radiation effects on flow and heat transfer in micropolar fluid film past moving permeable infinite flat plate with slip velocity. Applied Mathematics and Mechanics (English Edition), 33, 663–678 (2012) DOI 10.1007/s10483-012-1578-x

    Article  MathSciNet  Google Scholar 

  18. Shit, G. C. and Halder, R. Thermal radiation and Hall effect on MHD flow, heat and mass transfer over an inclined permeable stretching sheet. Thermal Science, 15, S195–S204 (2011)

    Article  Google Scholar 

  19. Hayat, T., Shehzad, S. A., and Qasim, M. Mixed convection flow of a micropolar fluid with radiation and chemical reaction. International Journal for Numerical Methods in Fluids, 67, 1418–1436 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qasim, M., Hayat, T., and Obaidat, S. Radiation effect on the mixed convection flow of a viscoelastic fluid along an inclined stretching sheet. Z. Naturforsch., 67a, 195–200 (2012)

    Article  Google Scholar 

  21. Wang, C. Y. The three-dimensional flow due to a stretching sheet. Physics of Fluids, 27, 1915–1917 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ariel, P. D. The three-dimensional flow past a stretching sheet and the homotopy perturbation method. Computers and Mathematics with Applications, 54, 920–925 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liao, S. J. Beyond Perturbation: Introduction to Homotopy Analysis Method, Chapman and Hall, CRC Press, Boca Raton (2003)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Additional information

Project supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia (No. 2-135/HiCi)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayat, T., Shehzad, S.A. & Alsaedi, A. Three-dimensional stretched flow of Jeffrey fluid with variable thermal conductivity and thermal radiation. Appl. Math. Mech.-Engl. Ed. 34, 823–832 (2013). https://doi.org/10.1007/s10483-013-1710-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1710-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation