Skip to main content
Log in

Variable fluid properties and thermal radiation effects on flow and heat transfer in micropolar fluid film past moving permeable infinite flat plate with slip velocity

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This work deals with the influence of thermal radiation on the problem of the mixed convection thin film flow and heat transfer of a micropolar fluid past a moving infinite vertical porous flat plate with a slip velocity. The fluid viscosity and the thermal conductivity are assumed to be the functions of temperature. The equations governing the flow are solved numerically by the Chebyshev spectral method for some representative value of various parameters. In comparison with the previously published work, the excellent agreement is shown. The effects of various parameters on the velocity, the microrotation velocity, and the temperature profiles, as well as the skin-friction coefficient and the Nusselt number, are plotted and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c p :

specific heat at constant pressures

C f :

skin-friction coefficient

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{F}\) :

body force per unit mass

f w :

dimensionless suction or injection velocity

g :

gravitational acceleration acting in the downward direction

g(η):

dimensionless microrotation

J :

microinertia

k :

gyroviscosity

K :

material parameter

k*:

mean absorption coefficient

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{l}\) :

body couple per unit mass

m 1 :

buoyancy parameter

n :

boundary parameter

N :

dimensional component of microrotation vector normal to the XY-plane

Nu :

Nusselt number

p :

pressure

Pr :

Prandtl number

Q :

internal heat generation density

q r :

radiation heat flux

q w :

heat transfer from the plate

R :

radiation parameter

Re :

Reynolds number

T :

fluid temperature

T 0 :

temperature on the free surface

T w :

surface temperature of the plate

U,V :

dimensional components of the velocities along and perpendicular to the plate, respectively

U w :

surface velocity

u :

dimensionless velocity along the plate

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{U}\) :

translational vector

V w :

dimensional suction or injection velocity

X,Y :

dimensional distances along and perpendicular to the plate, respectively.

α*,β*,γ*:

material constants for micropolar fluids

β 1,β 2 :

viscosity and thermal conductivity parameters, respectively

µ0 :

fluid viscosity at the temperature T 0

κ 0 :

thermal conductivity at the temperature T 0

φ :

dissipation function

δ :

film thickness

ν 0 :

kinematic viscosity at the temperature T 0

α w :

dimensional slip coefficient

ρ 0 :

density of the fluid at the temperature T 0

η :

dimensionless distance normal to the plate

σ*:

Stefan-Boltzmann constant

κ f :

thermal conductivity

µ:

dynamic viscosity

ρ :

fluid density

α :

dimensionless slip parameter

τ w :

wall shear stress

β :

thermal expansion coefficient

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\sigma }\) :

microrotation vector

θ :

dimensionless temperature

References

  1. Sakiadis, B. C. Boundary layer behavior on continuous solid surface, II: the boundary layer on a continuous flat surface. AIChE J., 7, 221–225 (1961)

    Article  Google Scholar 

  2. Tsou, F. K., Sparrow, E. M., and Goldstein, K. J. Flow and heat transfer in the boundary layer on a continuous moving surface. Int. J. Heat Mass Transfer, 10, 219–235 (1967)

    Article  Google Scholar 

  3. Erickson, L. E., Fan, L. T., and Fox, V. G. Heat and mass transfer on a moving continuous flat plate with suction or blowing. Ind. Eng. Chem. Fund., 5, 19–25 (1966)

    Article  Google Scholar 

  4. Griffin, J. F. and Thorne, J. L. On the thermal boundary layer growth on continuous moving belts. AIChE J., 13, 1210–1211 (1967)

    Article  Google Scholar 

  5. Moutsoglou, A. and Chen, T. S. Buoyancy effects in boundary layers on inclined continuous moving sheets. J. Heat Transfer, 102, 171–173 (1980)

    Article  Google Scholar 

  6. Jeng, D. R., Chang, T. C. A., and De-Witt, K. J. Momentum and heat transfer on a continuous moving surface. J. Heat Transfer, 108, 532–537 (1986)

    Article  Google Scholar 

  7. Takhar, H. S., Chamkha, A. J., and Nath, G. Effect of buoyancy forces on the flow and heat transfer over a continuous moving vertical or inclined surface. Int. J. Therm. Sci., 40, 825–833 (2001)

    Article  Google Scholar 

  8. Mahmoud, M. A. A. Variable viscosity effects on hydromagnetic boundary layer flow along a continuously moving vertical plate in the presence of radiation. Appl. Math. Sci., 1, 799–814 (2007)

    MATH  Google Scholar 

  9. Mahmoud, M. A. A. and Megahed, A. M. On steady hydromagnetic boundary-layer flow of a non-Newtonian power-law fluid over a continuously moving surface with suction. Chem. Eng. Comm., 194, 1457–1469 (2007)

    Article  Google Scholar 

  10. Mahmoud, M. A. A. and Megahed, A. M. Effects of viscous dissipation and heat generation (absorption) in a thermal boundary layer of a non-Newtonian fluid over a continuously moving permeable flat plate. J. Appl. Mech. Tech. Phys., 50, 819–825 (2009)

    Article  Google Scholar 

  11. Bar-Cohen, A., Sherwood, G., Hodes, M., and Solbreken, G. L. Gas-assisted evaporative cooling of high density electronic modules. IEEE Trans. CPMT., Part A, 18, 502–509 (1995)

    Google Scholar 

  12. Chun, K. R. and Seban, R. A. Heat transfer to evaporating liquid films. ASME J. Heat Transfer, 93, 391–396 (1971)

    Article  Google Scholar 

  13. Killion, J. D. and Garimella, S. Simulation of pendant droplets and falling films in horizontal tube absorbers. ASME J. Heat Transfer, 126, 1003–1013 (2004)

    Article  Google Scholar 

  14. Rabani, E., Rechman, D. R., Gelssler, P. L., and Brus, L. E. Drying mediated self-assembly of nano-particles. nature, 426, 271–274 (2003)

    Article  Google Scholar 

  15. Calvert, P. Ink-jet printing for materials and devices. Chem. Mater., 13, 3299–3305 (2001)

    Article  Google Scholar 

  16. Wang, C. Liquid film on an unsteady stretching surface. Quarterly of Applied Mathematics, 48, 601–610 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Andersson, H. I., Aarseth, J. B., and Dandapat, B. S. Heat transfer in a liquid film on an unsteady stretching surface. Int. J. Heat Mass Transfer, 43, 69–74 (2000)

    Article  MATH  Google Scholar 

  18. Dandapat, B. S., Santra, B., and Andersson, H. I. Thermocapillarity in a liquid film on an unsteady stretching surface. Int. J. Heat Mass Transfer, 46, 3009–3015 (2003)

    Article  MATH  Google Scholar 

  19. Chen, C. H. Effect of viscous dissipation on heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet. J. Non-Newtonian Fluid Mech., 135, 128–135 (2006)

    Article  MATH  Google Scholar 

  20. Wang, C. and Pop, I. Analysis of the flow of a power-law fluid film on an unsteady stretching surface by means of homotopy analysis method. J. Non-Newtonian Fluid Mech., 138, 161–172 (2006)

    Article  MATH  Google Scholar 

  21. Abbas, Z., Hayat, T., Sajid, M., and Asghar, S. Unsteady flow of a second grade fluid film over an unsteady stretching sheet. Mathematical and Computer Modelling, 48, 518–526 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Abel, M. S., Mahesha, N., and Tawade, J. Heat transfer in a liquid film over an unsteady stretching surface with viscous dissipation in presence of external magnetic field. Applied Mathematical Modelling, 33, 3430–3441 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Santra, B. and Dandapat, B. S. Unsteady thin-film flow over a heated stretching sheet. Int. J. Heat Mass Transfer, 52, 1965–1970 (2009)

    Article  MATH  Google Scholar 

  24. Noor, N. F. M., Abdulaziz, O., and Hashim, I. MHD flow and heat transfer in a thin liquid film on an unsteady stretching sheet by the homotopy analysis method. Int. J. Numer. Meth. Fluids, 63, 357–373 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Siddiqui, A. M., Mahmood, R., and Ghori, Q. K. Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane. Chaos, Solitons and Fractals, 35, 140–147 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Eringen, A. C. Theory of micropolar fluids. J. Math. Mech., 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  27. Eringen, A. C. Theory of thermomicropolar fluids. J. Math. Appl., 38, 480–495 (1972)

    MATH  Google Scholar 

  28. Armin, T., Turk, M. A., and Sylvester, N. D. Microcontinuum fluid mechanics — a review. Int. J. Engng. Sci., 11, 905–915 (1973)

    Article  Google Scholar 

  29. Armin, T., Turk, M. A., and Sylvester, N. D. Application of microcontinuum fluid mechanics. Int. J. Engng. Sci., 12, 273–279 (1974)

    Article  Google Scholar 

  30. Lukaszewicz, G. Micropolar Fluids: Theory and Application, Birkhäuser, Basel (1999)

    Google Scholar 

  31. Eringen, A. C. Microcontinuum Field Theories, II: Fluent Media, Springer, New York (2001)

    Google Scholar 

  32. Chaudhary, R. C. and Jha, A. K. Effects of chemical reactions on MHD micropolar fluid past a vertical plate in slip-flow regime. Appl. Math. Mech. -Engl. Ed., 29, 1179–1194 (2008) DOI 10.1007/s10483-008-0907-x

    Article  MATH  Google Scholar 

  33. Hayat, T., Sajid, M., and Ali, N. On exact solutions for thin film flows of a micropolar fluid. Communications in Nonlinear Science and Numerical Simulation, 14, 451–461 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dandapat, B. S., Santra, B., and Vajravelu, K. The effects of variable fluid properties and thermocapillarity on the flow of a thin film on an unsteady stretching sheet. Int. J. Heat Mass Transfer, 50, 991–996 (2007)

    Article  MATH  Google Scholar 

  35. Nadeem, S. and Faraz, N. Thin film flow of a second grade fluid over a stretching/shrinking sheet with variable temperature-dependent viscosity. Chinese Physics Letters, 27, 034704 (2010)

    Article  Google Scholar 

  36. Makinde, O. D. Laminar falling liquid film with variable viscosity along an inclined heated plate. Applied Mathematics and Computation, 175, 80–88 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mahmoud, M. A. A. and Megahed, A. M. MHD flow and heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet with variable fluid properties. Can. J. Phys., 87, 1065–1071 (2009)

    Article  Google Scholar 

  38. Hayat, T., Javed, T., and Abbas, Z. Slip flow and heat transfer of a second grade fluid past a stretching sheet through a porous space. Int. J. Heat Mass Transfer, 51, 4528–4534 (2008)

    Article  MATH  Google Scholar 

  39. Asghar, S., Gulzar, M. M., and Ayub, M. Effects of partial slip on flow of a third grade fluid. Acta Mech. Sin., 22, 393–396 (2006)

    Article  MATH  Google Scholar 

  40. Mahmoud, M. A. A. Slip effects on flow and heat transfer of a non-Newtonian fluid on a stretching surface with thermal radiation. Int. J. Chem. React. Engng., 6, A92 (2008)

    Google Scholar 

  41. Sajid, M., Awais, M., Nadeem, S., and Hayat, T. The influence of slip condition on thin film flow of a fourth grade fluid by the homotopy analysis method. Computers and Mathematics with Applications, 56, 2019–2026 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zueco, J. and Ahmed, S. Combined heat and mass transfer by mixed convection MHD flow along a porous plate with chemical reaction in presence of heat source. Appl. Math. Mech. — Engl. Ed., 31, 1217–1230 (2010) DOI 10.1007/s10483-010-1355-6

    Article  MathSciNet  MATH  Google Scholar 

  43. Chandrakala, P. Radiation effects on flow past an impulsively started vertical oscillating plate with uniform heat flux. International Journal of Dynamics of Fluids, 7, 1–8 (2011)

    Google Scholar 

  44. Jena, S. K. and Mathur, M. N. Similarity solution for laminar free convection flow of thermomicropolar fluid past a non-isothermal vertical flat plate. Int. J. Engng. Sci., 19, 1431–1439 (1981)

    Article  MATH  Google Scholar 

  45. Peddieson, J. and McNitt, R. P. Boundary layer theory for a micropolar fluid. Recent Adv. Engng. Sci., 5, 405–426 (1970)

    Google Scholar 

  46. Raptis, A. Radiation and viscoelastic flow. Int. Comm. Heat Mass Transfer, 26, 889–895 (1999)

    Article  Google Scholar 

  47. El-Gendi, S. E. Chebyshev solution of differential, integral and integro-differential equations. Computer J., 12, 282–287 (1969)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. A. Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoud, M.A.A., Waheed, S.E. Variable fluid properties and thermal radiation effects on flow and heat transfer in micropolar fluid film past moving permeable infinite flat plate with slip velocity. Appl. Math. Mech.-Engl. Ed. 33, 663–678 (2012). https://doi.org/10.1007/s10483-012-1578-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1578-x

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation