Skip to main content
Log in

Thermal radiation effects on flow of Jeffery fluid in converging and diverging stretchable channels

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper investigates the flow of Jeffery fluid between converging and diverging channels. The walls of the channel are assumed to be capable for stretching or shrinking. Also, the influence of thermal radiations on flow field is under consideration in stretchable converging and diverging channels. The set of highly nonlinear and dimensional flow model is transformed into a dimensionless system of ordinary differential equations. For said purpose, we utilized feasible similarity variables. Solution of the said system is then obtained with the help of Adomian decomposition method. For the sake of comparison, numerical solution is also calculated by using Runge–Kutta scheme of fourth-order coupled with shooting technique. The influence of ingrained nondimensional physical quantities is also investigated graphically for velocity and temperature fields. The comparison between the velocity fields of non-Newtonian and Newtonian cases are also portrayed graphically. Furthermore, some values for unknown constants that appeared in analytical solution are calculated for different values of dimensionless physical quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jeffery GB (1915) The two-dimensional steady motion of a viscous fluid. Philos Mag Ser 6 29(172):455–465

    Article  Google Scholar 

  2. Hamel G (1916) Spiralformige Bewgungen zaher Flussigkeiten. Jahresbericht der deutschen mathematiker-vereinigung 25:34–60

    MATH  Google Scholar 

  3. Mohyud-Din ST, Khan U, Ahmed N, Hassan SM (2015) Magnetohydrodynamic flow and heat transfer of nanofluids in stretchable convergent/divergent channels. Appl Sci 5:1639–1664

    Article  Google Scholar 

  4. Mohyud-Din ST, Khan U, Ahmed N, Sikander W (2015) A study of velocity and temperature slip effects on flow of water based nanofluids in converging and diverging channels. Int J Appl Comput Math 1(4):569–587

    Article  MathSciNet  Google Scholar 

  5. Poor HZ, Moosavi H, Moradi A, Parastarfeizabadi M (2014) On thermal radiation effect in the MHD Jeffery–Hamel flow of a second grade fluid. Int J Res Appl Sci Eng Technol 2(vii):219–233

    Google Scholar 

  6. Joneidi AA, Ganji DD, Babaelahi M (2009) Differential transformation method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity. Int Commun Heat Mass Transfer 36(7):757–762

    Article  Google Scholar 

  7. Bellman R, Kashef BG, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys 10(1):40–52

    Article  MathSciNet  Google Scholar 

  8. Arikoglu A, Ozkol I (2006) Solution of difference equations by using differential transform method. Appl Math Comput 174(2):1216–1228

    MathSciNet  MATH  Google Scholar 

  9. Rajagopal KR, Gupta AS, Vossoughi J (1984) Slow flow of an incompressible third grade fluid in a converging/diverging channel. J Technol 28:27

    Google Scholar 

  10. Hayat T, Nawaz M, Sajid M (2010) Effect of heat transfer on the flow of second grade fluid in divergent/convergent channel. Int J Numer Meth Fluids 64:761–776

    MathSciNet  MATH  Google Scholar 

  11. Noor NFM, Abbasbandy S, Hashim I (2012) Heat and mass transfer of thermophoretic MHD flow over an inclined radiate isothermal permeable surface in the heat source/sink. Int J Heat Mass Transf 55:2122–2128

    Article  Google Scholar 

  12. Noor NF, Haq RU, Abbasbandy S, Hashim I (2016) Heat flux performance in a porous medium embedded Maxwell fluid flow over a vertically stretched plate due to heat absorption. J Nonlinear Sci Appl 9:2986–3001

    Article  MathSciNet  Google Scholar 

  13. Abbasbandy S (2007) Numerical solutions of nonlinear Klein–Gordon equation by variational iteration method. Int J Numer Methods Eng 70:876–881

    Article  Google Scholar 

  14. Abdou MA, Soliman AA (2005) Variational iteration method for solving Burger’s and coupled Burger’s equations. J Comput Appl Math 181:245–251

    Article  MathSciNet  Google Scholar 

  15. Noor MA, Mohy-ud-Din ST (2007) Variational iteration technique for solving higher order boundary value problems. Appl Math Comput 189:1929–1942

    MathSciNet  MATH  Google Scholar 

  16. Abdou AA, Soliman AA (2005) New applications of variational iteration method. Phys D 1(2):1–8

    Article  MathSciNet  Google Scholar 

  17. Mohy-ud-Din ST, Noor MA, Waheed A (2010) Variation of parameter method for initial and boundary value problems. World Appl Sci J 11:622–639

    Google Scholar 

  18. Khan U, Adnan, Asadullah M, Ahmed N, Mohy-ud-Din ST (2016) Influence of Joule heating and viscous dissipation on MHD flow and heat transfer of viscous fluid in converging/diverging stretchable channels. J Nanofluids 6:1–10

    Google Scholar 

  19. Esmaeilpour M, Ganji DD (2010) Solution of the Jeffery–Hamel flow problem by optimal homotopy asymptotic method. Comput Math Appl 59(11):3405–3411

    Article  MathSciNet  Google Scholar 

  20. Liao SJ (1997) Numerically solving non-linear problems by the homotopy analysis method. Comput Mech 20(6):530–540

    Article  Google Scholar 

  21. Liao S (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513

    MathSciNet  MATH  Google Scholar 

  22. Motsa SS, Sibanda P, Awad FG, Shateyi S (2010) A new spectral-homotopy analysis method for the MHD Jeffery–Hamel problem. Comput Fluids 39(7):1219–1225

    Article  MathSciNet  Google Scholar 

  23. Moghimi SM, Ganji DD, Bararnia H, Hosseini M, Jalaal M (2011) Homotopy perturbation method for nonlinear MHD Jeffery–Hamel problem. Comput Math Appl 61(8):2213–2216

    Article  MathSciNet  Google Scholar 

  24. Noor MA, Mohyud-Din ST (2008) Homotopy perturbation method for solving sixth-order boundary value problems. Comput Math Appl 55:2953–2972

    Article  MathSciNet  Google Scholar 

  25. Grzymkowski R, Pleszczyński M, Słota D (2006) Comparing the Adomian decomposition method and the Runge–Kutta method for solutions of the Stefan problem. Int J Comput Math 83(4):409–417

    Article  MathSciNet  Google Scholar 

  26. Wazwaz AM (2006) The modified decomposition method for analytic treatment of differential equations. Appl Math Comput 173(1):165–176

    MathSciNet  MATH  Google Scholar 

  27. Lesnic D, Elliott L (1999) The decomposition approach to inverse heat conduction. J Math Anal Appl 232(1):82–98

    Article  MathSciNet  Google Scholar 

  28. Luo XG, Wu Q-B, Zhang B-Q (2006) Revisit on partial solutions in the Adomian decomposition method: solving heat and wave equations. J Math Anal Appl 321(1):353–363

    Article  MathSciNet  Google Scholar 

  29. Khan U, Ahmed N, Zaidi ZA, Jan SU, Mohy-ud-Din ST (2013) On Jeffery–Hamel flows. Int J Mod Math Sci 7(3):236–247

    Google Scholar 

  30. Asadullah M, Khan U, Ahmed N, Manzoor R, Mohyud-Din ST (2013) MHD flow of a Jeffery fluid in converging and diverging. Int J Mod Sci 6(2):92–106

    Google Scholar 

  31. Mohy-ud-Din ST, Khan U, Ahmed N, Hassan SM (2015) Magnetohydrodynamic flow and heat transfer of nanofluids in stretchable convergent/divergent channel. Appl Sci 5:1639–1664

    Article  Google Scholar 

  32. Khan U, Ahmed N, Mohyud-Din ST (2016) Soret and Dufour effects on flow in converging and diverging channels with chemical reaction. Aerosp Sci Technol 49:135–143

    Article  Google Scholar 

  33. Khan U, Ahmed N, Mohy-ud-Din ST (2016) Thermo-diffusion, diffusion-thermo and chemical reaction effects on MHD flow of viscous fluid in convergent and divergent channel. Chem Eng Sci 141:17–27

    Article  Google Scholar 

  34. Asadullah M, Khan U, Ahmed N, Mohy-ud-Din ST (2016) Analytical and numerical investigation of thermal radiation effects on flow of viscous incompressible fluid with stretchable convergent/divergent channels. J Mol Liq 224:768–775

    Article  Google Scholar 

  35. Khan U, Ahmed N, Mohy-ud-Din ST (2016) Thermo-diffusion and diffusion-thermo effects on flow of second grade fluid between two inclined plane walls. J Mol Liq 224:1074–1082

    Article  Google Scholar 

  36. Hayat T, Sajjad R, Asghar S (2010) Series solution for MHD channel flow of a Jeffery fluid. Commun Nonlinear Sci Numer Simul 15:2400

    Article  MathSciNet  Google Scholar 

  37. Motsa SS, Sibanda P, Marewo GT (2012) On a new analytical method for flow between two inclined walls. Numer Algorithms 61:499–514

    Article  MathSciNet  Google Scholar 

  38. Turkyilmazoglu M (2014) Extending the traditional Jeffery–Hamel flow to stretchable convergent/divergent channels. Comput Fluids 100:196–203

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Khan.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Abbasi, A., Khan, U. et al. Thermal radiation effects on flow of Jeffery fluid in converging and diverging stretchable channels. Neural Comput & Applic 30, 2371–2379 (2018). https://doi.org/10.1007/s00521-016-2831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2831-5

Keywords

Navigation