Skip to main content
Log in

Terrihabitans rhizophilus sp. nov., isolated from the rhizosphere soil of plant in temperate semi-arid steppe

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A bacterial strain PJ23T was isolated from the rhizosphere soil of Elymus dahuricus Turcz. sampled from a temperate semi-arid steppe in the northern of Inner Mongolia Autonomous Region, China. The strain is Gram-stain-negative, aerobic, light-pink, short rod-shaped, and non-spore-forming. Cell growth could be observed at 4–29℃ (optimal at 24℃), pH 6.0–8.6 (optimal at 8.0) and in the presence of 0–5.0% (w/v) NaCl (optimal at 2.5%). The major cellular fatty acids of strain PJ23T were Summed feature 8 (C18:1 ω6c and/or C18:1 ω7c) (39.42%) and C16:0 (9.60%). The polar lipids were phosphatidylcholine, two unidentified glycolipids, one unidentified aminophospholipid, and two other unidentified polar lipids. The major respiratory quinone was ubiquinone-10. Phylogeny analysis based on 16S rRNA gene sequences retrieved from the genomes showed that, the strain was closely related to the species Terrihabitans soli IZ6T and Flaviflagellibacter deserti SYSU D60017T, with the sequence similarities of 96.79% and 96.15%, respectively. The G + C content was 65.23 mol% calculated on draft genome sequencing. Between the strains PJ23T and Terrihabitans soli IZ6T, the average nucleotide identity (ANI), amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) was 73.39%,71.12% and 15.7%, these values were lower than the proposed and generally accepted species boundaries of ANI, AAI and dDDH, respectively. Based on phenotypic, chemotaxonomic, and phylogenetic characteristics, strain PJ23T represents a novel species of Terrihabitans, for which the name Terrihabitans rhizophilus sp. nov. is proposed. The type strain is PJ23T (= KCTC 92977 T = CGMCC 1.61577 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANI:

Average nucleotide identity

dDDH:

Digital DNA–DNA hybridization

R2A:

Reasoner’s 2A

References

  • Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K (2017) Draft genome sequence of type strain HBR26 T and description of Rhizobium aethiopicum sp. nov. Stand Genomic Sci 12:1–16

    Article  Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    Article  CAS  PubMed  Google Scholar 

  • Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coban O, De Deyn GB, van der Ploeg M (2022) Soil microbiota as game-changers in restoration of degraded lands. Science 375:0725

    Article  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: Emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Han M-X, Wang D, Liu F, Asem MD et al (2019) Flaviflagellibacter deserti gen nov., sp. nov., a novel member of the order Rhizobiales isolated from a desert soil. Antonie van Leeuwenhoek 112:947–954

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Ha S-M, Kim CK, Roh J, Byun J-H, Yang S-J et al (2019) Application of the whole genome-based bacterial identification system, Truebac id, using clinical isolates that were not identified with three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems. Ann Lab Med 39:530–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He A, Niu S, Yang D, Ren W, Zhao L et al (2021) Two PGPR strains from the rhizosphere of Haloxylon ammodendron promoted growth and enhanced drought tolerance of ryegrass. Plant Physiol Biochem 161:74–85

    Article  CAS  PubMed  Google Scholar 

  • Komagata K, Suzuki K-I (1988) Lipid and cell-wall analysis in bacterial systematics. In: Methods in Microbiology. Elsevier. pp. 161–207

  • Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2007) Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 10:504–509

    Article  CAS  PubMed  Google Scholar 

  • Kovacs N (1956) Identification of Pseudomonas pyocyanea by the Oxidase Reaction. Nature 178:703–703

    Article  CAS  PubMed  Google Scholar 

  • Kroll JS, Moxon ER (1988) Capsulation and gene copy number at the cap locus of Haemophilus influenzae type b[J]. J Bacteriol 170(2):859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S-M, Zheng H-X, Zhang X-S, Sui N (2021) Cytokinins as central regulators during plant growth and stress response. Plant Cell Rep 40:271–282

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Xamxidin M, Sun C, Cheng H, Meng F-X et al (2018) Marinobacter fuscus sp. nov., a marine bacterium of Gammaproteobacteria isolated from surface seawater. Int J Syst Evol Microbiol 68:3156–3162

    Article  CAS  PubMed  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucl Acids Res 42:D490–D495

    Article  CAS  PubMed  Google Scholar 

  • Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E et al (2014) IMG 4 version of the integrated microbial genomes comparative analysis system. Nucl Acids Res 42:D560–D567

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al (1987) Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464

    Article  Google Scholar 

  • Na S-I, Kim YO, Yoon S-H, Ha S, Baek I et al (2018) UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285

    Article  CAS  PubMed  Google Scholar 

  • Nakai R, Naganuma T, Tazato N, Kunihiro T, Morohoshi S et al (2021) Characterization of Terrihabitans soli gen nov., sp. nov., a Novel 0.2 μm-filterable soil bacterium belonging to a widely distributed lineage of Hyphomicrobiales (Rhizobiales). Diversity 13:422

    Article  CAS  Google Scholar 

  • Nussaume L (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 2. https://doi.org/10.3389/fpls.2011.00083

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–945

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids[J]

  • Singh BN, Dwivedi P (2023) Trichoderma-induced promotion of nitrogen use efficiency is mediated by nitric oxide generation leading to improved growth and yield in pea (Pisum sativum L.) Plants. J Plant Growth Regul 42:6397–6412

    Article  CAS  Google Scholar 

  • Singh DP, Singh V, Shukla R, Sahu P, Prabha R et al (2020) Stage-dependent concomitant microbial fortification improves soil nutrient status, plant growth, antioxidative defense system and gene expression in rice. Microbiol Res 239:126538

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volpiano CG, Sant’Anna FH, Ambrosini A, de São José JFB, Beneduzi A et al (2021) Genomic Metrics Applied to Rhizobiales (Hyphomicrobiales): Species Reclassification, Identification of Unauthentic Genomes and False Type Strains. Front Microbiol 12:614957

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfe AJ, Berg HC (1989) Migration of bacteria in semisolid agar. Proc Natl Acad Sci U S A 86:6973–6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al (2017a) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon S-H, Ha S, Lim J, Kwon S, Chun J (2017b) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Feng F, Medová H, Dean J, Koblížek M (2014) Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci USA 111:7795–7800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo G, Hao B (2015) CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinforma 13:321–331

    Article  Google Scholar 

Download references

Funding

This work was mainly supported by the Applied Technology Research and Development Fund of Inner Mongolia (2021GG0360), Natural Science Foundation of Inner Mongolia Autonomous Region (2023LHMS03030 and 2023MS03016) and Science and Technology Program of Inner Mongolia Autonomous Region (2023YFHH0028).

Author information

Authors and Affiliations

Authors

Contributions

Runze Bao, Kai Tang and Fuying Feng wrote the main manuscript text, Huiling Guo organized the data, while Yungang Liang prepared Figures 1 and S1-S4. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jianyu Meng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank/ENA/DDBJ accession numbers for 16S rRNA gene sequence and the draft genome of Terrihabitans rhizophilus strain PJ23T are OR801651 and JAXAFJ000000000, respectively.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1885 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, R., Guo, H., Liang, Y. et al. Terrihabitans rhizophilus sp. nov., isolated from the rhizosphere soil of plant in temperate semi-arid steppe. Antonie van Leeuwenhoek 117, 67 (2024). https://doi.org/10.1007/s10482-024-01966-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10482-024-01966-w

Keywords

Navigation