Skip to main content
Log in

Current trends in management of bacterial pathogens infecting plants

  • Review Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Plants are continuously challenged by different pathogenic microbes that reduce the quality and quantity of produce and therefore pose a serious threat to food security. Among them bacterial pathogens are known to cause disease outbreaks with devastating economic losses in temperate, tropical and subtropical regions throughout the world. Bacteria are structurally simple prokaryotic microorganisms and are diverse from a metabolic standpoint. Bacterial infection process mainly involves successful attachment or penetration by using extracellular enzymes, type secretion systems, toxins, growth regulators and by exploiting different molecules that modulate plant defence resulting in successful colonization. Theses bacterial pathogens are extremely difficult to control as they develop resistance to antibiotics. Therefore, attempts are made to search for innovative methods of disease management by the targeting bacterial virulence and manipulating the genes in host plants by exploiting genome editing methods. Here, we review the recent developments in bacterial disease management including the bioactive antimicrobial compounds, bacteriophage therapy, quorum-quenching mediated control, nanoparticles and CRISPR/Cas based genome editing techniques for bacterial disease management. Future research should focus on implementation of smart delivery systems and consumer acceptance of these innovative methods for sustainable disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas A, Naz SS, Syed SA (2019) Antimicrobial activity of silver nanoparticles (AgNPs) against Erwinia carotovora subsp. atroseptica and Alternaria alternata. Pak J Agric Sci 56(1):113–117

    Google Scholar 

  • Abdel MA (2013) Controlling of Pseudomonas syringae by nanoparticles produced by Streptomyces bikiniensis. J Pure Appl Microbiol 7:1121–1129

    Google Scholar 

  • Achari GA, Ramesh R (2015) Characterization of bacteria degrading 3-hydroxy palmitic acid methyl ester (3OH-PAME), a quorum sensing molecule of Ralstonia solanacearum. Lett Appl Microbiol 60(5):447–455. https://doi.org/10.1111/lam.12389

    Article  CAS  PubMed  Google Scholar 

  • Addy HS, Askora A, Kawasaki T, Fujie M, Yamada T (2012) Loss of virulence of the phytopathogen Ralstonia solanacearum through infection by ϕRSM filamentous phages. Phytopathology 102(5):469–477

    Article  CAS  PubMed  Google Scholar 

  • Agrios GN (2005) Plant pathology. Academic Press, London

    Google Scholar 

  • Ahmed T, Shahid M, Noman M, Niazi MBK, Mahmood F, Manzoor I et al (2020) Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice. Pathogens 9(3):160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbari Kiarood SL, Rahnama K, Golmohammadi M, Nasrollanejad S (2020) Quorum-quenching endophytic bacteria inhibit disease caused by Pseudomonas syringae pv. syringae in Citrus cultivars. J Basic Microbiol 60(9):746–757

    CAS  PubMed  Google Scholar 

  • Alam T, Khan RAA, Ali A, Sher H, Ullah Z, Ali M (2019) Biogenic synthesis of iron oxide nanoparticles via Skimmia laureola and their antibacterial efficacy against bacterial wilt pathogen Ralstonia solanacearum. Mater Biol Appl 98:101–108

    CAS  Google Scholar 

  • Al-Huqail AA, Behiry SI, Salem MZ, Ali HM, Siddiqui MH, Salem AZ (2019) Antifungal, antibacterial, and antioxidant activities of Acacia saligna (Labill.) HL Wendl. flower extract: HPLC analysis of phenolic and flavonoid compounds. Molecules 24(4):700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alinejad F, Shahryari F, Eini O, Sarafraz-Niko F, Shekari A, Setareh M (2020) Screening of quorum-quenching bacteria associated with rhizosphere as biocontrol agents of Pectobacterium carotovorum subsp. carotovorum. Arch Phytopathol Plant Prot 53(11–12):509–523

    Article  CAS  Google Scholar 

  • Alymanesh MR, Parissa T, Saeed T (2016) Pseudomonas as a frequent and important quorum quenching bacterium with biocontrol capability against many phytopathogens. Biocontrol Sci Technol 26(12):1719–1735

    Article  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms of plant surfaces. Annu Rev Phytopathol 38:145–180

    Article  PubMed  Google Scholar 

  • Antunes LCM, Ferreira RB, Buckner MM, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156:2271–2282

    Article  CAS  PubMed  Google Scholar 

  • Arnold DL, Preston GM (2019) Pseudomonas syringae: enterprising epiphyte and stealthy parasite. Microbiology 165:251–253

    Article  CAS  PubMed  Google Scholar 

  • Asfour HZ (2018) Anti-quorum sensing natural compounds. J Microsc Ultrastruct 6:1–10. https://doi.org/10.4103/JMAU.JMAU-10-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Bae JY, Wu J, Lee HJ, Jo EJ, Murugaiyan S, Chung E, Lee SW (2012) Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. J Microbiol Biotechnol 22(12):1613–1620

    Article  PubMed  Google Scholar 

  • Balogh B, Canteros BI, Stall RE, Jones JB (2008) Control of citrus canker and citrus bacterial spot with bacteriophages. Plant Dis 92:1048–1052. https://doi.org/10.1094/PDIS-92-7-1048

    Article  PubMed  Google Scholar 

  • Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants 1:15145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber C, Tang J, Feng J, Pan M, Wilson T, Slater H, Dow J, Williams P, Daniels M (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated a small diffusible signal molecule. Mol Microbiol 24(3):555–566

    Article  CAS  PubMed  Google Scholar 

  • Barnard AML, Salmond GPC (2007) Quorum sensing in Erwinia species. Anal Biolanal Chem 387:415–423

    Article  CAS  Google Scholar 

  • Behiry SI, El-Hefny M, Salem MZ (2020) Toxicity effects of Eriocephalus africanus L. leaf essential oil against some molecularly identified phytopathogenic bacterial strains. Nat Prod Res 34(23):3394–3398

    Article  CAS  PubMed  Google Scholar 

  • Bender CL, Alarcon-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins: mode of action, regulation and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63:266–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender CL, Scholz-Schroeder BK (2004) New insights into the biosynthesis, mode of action, and regulation of syringomycin, syringopeptin, and coronatine. In: Ramos JL (ed) The pseudomonads. Kluwer, Dordrecht, pp 125–158

    Chapter  Google Scholar 

  • Bhoyar MS, Singh UB, Sahu U, Nagrale DT, Sahu PK (2017) Characterization of lytic bacteriophage XCC9SH3 infecting Xanthomonas campestris pv. campestris. J Plant Pathol 99:233–238

    Google Scholar 

  • Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A (2018) The enhancement of plant disease resistance using CRISPR/Cas9 technology. Front Plant Sci 9:1245–1245

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourigault Y, Rodrigues S, Crépin A, Chane A, Taupin L, Bouteiller M, Dupont C, Merieau A, Konto-Ghiorghi Y, Boukerb AM et al (2021) Biocontrol of biofilm formation: jamming of sessile-associated rhizobial communication by rhodococcal quorum-quenching. Int J Mol Sci 22:8241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buonaurio R (2008) Infection and plant defense responses during plant bacterial interaction. In: Barka EA, Clément C (eds) Plant-microbe interactions, Research Signpost, Kerala, India, pp 169–197

  • Burch TR, Sadowsky MJ, LaPara TM (2017) Effect of different treatment technologies on the fate of antibiotic resistance genes and class 1 integrons when residual municipal waste water solids are applied to soil. Environ Sci Technol 51:14225–14232

    Article  CAS  PubMed  Google Scholar 

  • Caicedo JC, Villamizar S, Ferro MIT, Kupper KC, Ferro JA (2016) Bacteria from the citrus phylloplane can disrupt cell–cell signalling in Xanthomonas citri and reduce citrus canker disease severity. Plant Pathol 65(5):782–791

    Article  CAS  Google Scholar 

  • Camele I, Elshafie HS, Caputo L, De Feo V (2019) Anti-quorum sensing and antimicrobial effect of mediterranean plant essential oils against phytopathogenic bacteria. Front Microbiol 10:2619. https://doi.org/10.3389/fmicb.2019.02619

    Article  PubMed  PubMed Central  Google Scholar 

  • Carstens AB, Djurhuus AM, Kot W, Hansen LH (2019) A novel six-phage cocktail reduces Pectobacterium atrosepticum soft rot infection in potato tubers under simulated storage conditions. FEMS Microbiol Lett 366(9):fnz101. https://doi.org/10.1093/femsle/fnz101

    Article  CAS  PubMed  Google Scholar 

  • Chang JH, Desveaux D, Creason AL (2014) The ABCs and 123s of bacterial secretion systems in plant pathogenesis. Annu Rev Phytopathol 52:317–345

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li S, Luo J, Wang R, Ding W (2016) Enhancement of the antibacterial activity of silver nanoparticles against phytopathogenic bacterium Ralstonia solanacearum by stabilization. J Nanomater. https://doi.org/10.1155/2016/7135852

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Mao S, Xu Z, Ding W (2019) Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soil borne Ralstonia solanacearum. RSC Adv 9(7):3788–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chern MS, Fitzgerald HA, Yadav RC, Canlas PE, Dong X, Ronald PC (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J 27:101e13

    Article  Google Scholar 

  • Chibage FC, Nyoni M, Murashiki TC, Samukange VC, Muzerengwa R, Mahuni C, Savadye DT (2022) Cisgenesis and intragenesis: innovative tools for crop improvement. In: Cisgenic crops: potential and prospects. Springer, Cham, pp 43–65

  • Cisek AA, Dąbrowska I, Gregorczyk KP, Wyżewski Z (2017) Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr Microbiol 74:277–283

    Article  CAS  PubMed  Google Scholar 

  • Clavijo-Coppens F, Ginet N, Cesbron S, Briand M, Jacques MA, Ansaldi M (2021) Novel virulent bacteriophages infecting mediterranean isolates of the plant pest Xylella fastidiosa and Xanthomonas albilineans. Viruses 13(5):725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coenye T, Nelis HJ (2010) Review, in vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods 83:89–105. https://doi.org/10.1016/j.mimet.2010.08.018

    Article  CAS  PubMed  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Czajkowski R (2016) Bacteriophages of soft rot Enterobacteriaceae—a mini-review. FEMS Microbiol Lett 363:fnv230. https://doi.org/10.1093/femsle/fnv230

    Article  CAS  PubMed  Google Scholar 

  • Czajkowski R, Smolarska A, Ozymko Z (2017) The viability of lytic bacteriophage ΦD5 in potato-associated environments and its effect on Dickeya solani in potato (Solanum tuberosum L.) plants. PLoS ONE 12(8):e0183200

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Costa VM, King CE, Kalan L, Morar M, Sung WWL et al (2011) Antibiotic resistance is ancient. Nature 477:457–461

    Article  PubMed  Google Scholar 

  • da Silva FP, Xavier ADS, Bruckner FP, de Rezende RR, Vidigal PMP, Alfenas-Zerbini P (2019) Biological and molecular characterization of a bacteriophage infecting Xanthomonas campestris pv. campestris, isolated from brassica fields. Arch Virol 164:1857–1862

    Article  PubMed  Google Scholar 

  • Daughtrey ML, Wick RL, Peterson JL (2006) Compendium of flowering potted plants. The American Phytopathological Society, St. Paul, pp 55–56

    Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira AG, Spago FR, Simionato AS, Navarro MOP, da Silva CS, Barazetti AR, Cely MVT et al (2016) Bioactive organocopper compound from Pseudomonas aeruginosa inhibits the growth of Xanthomonas citri subsp. citri. Front Microbiol 7:113

    Article  PubMed  PubMed Central  Google Scholar 

  • De Toledo Thomazella DP, Brail Q, Dahlbeck D, Staskawicz BJ (2016) CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. bioRxiv, 064824. https://doi.org/10.1101/064824

  • Dees MW, Lysøe E, Rossmann S, Perminow J, Brurberg MB (2017) Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol 67:5222–5229

    Article  CAS  PubMed  Google Scholar 

  • Dellagi A, Segond D, Rigault M, Fagard M, Simon C, Saindrenan P, Expert D (2009) Microbial siderophores exert a subtle role in arabidopsis during infection by manipulating the immune response and the iron status. Plant Physiol 150:1687–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denaro M, Smeriglio A, Barreca D, De Francesco C, Occhiuto C, Milano G, Trombetta D (2020) Antiviral activity of plants and their isolated bioactive compounds: an update. Phytother Res 34(4):742–768

    Article  PubMed  Google Scholar 

  • Denny TP (1995) Involvement of bacterial polysaccharides in plant pathogenesis. Annu Rev Phytopathol 33:173–197

    Article  CAS  PubMed  Google Scholar 

  • Dong YH, Xu JL, Li XZ, Zhang LH (2000) Aii A, an enzyme that inactivates the acyl-homoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA 97:3526–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Xing S, Liu J, Tang X, Ruan L, Sun M, Peng D (2018) Isolation and characterization of a novel phage Xoo-sp2 that infects Xanthomonas oryzae pv. oryzae. J Gen Virol 99(10):1453–1462

    Article  CAS  PubMed  Google Scholar 

  • Dou C, Xiong J, Gu Y, Yin K, Wang J, Hu Y, Zhou D, Fu X, Qi S, Zhu X, Yao S, Xu H, Nie C, Liang Z, Yang S, Wei Y, Cheng W (2018) Structural and functional insights into the regulation of the lysis-lysogeny decision in viral communities. Nat Microbiol 3:1285–1294

    Article  CAS  PubMed  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR–Cas9. Science 346:1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  • Du H, Wen C, Zhang X, Xu X, Yang J, Chen B, Geng S (2019) Identification of a major QTL (qRRs-10.1) that confers resistance to Ralstonia solanacearum in pepper (Capsicum annuum) using SLAF-BSA and QTL mapping. Int J Mol Sci 20(23):5887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubchak S, Ogar A, Mietelski AW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscularmycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8:103–108

    Article  Google Scholar 

  • Elshafie HS, Ghanney N, Mang SM, Ferchichi A, Camele I (2016) An in vitro attempt for controlling severe phyto and human pathogens using essential oils from Mediterranean plants of genus Schinus. J Med Food 19:266–273. https://doi.org/10.1089/jmf.2015.0093

    Article  CAS  PubMed  Google Scholar 

  • Emeriewen OF, Wöhner T, Flachowsky H, Peil A (2019) Malus hosts–Erwinia amylovora interactions: strain pathogenicity and resistance mechanisms. Front Plant Sci 10:551

    Article  PubMed  PubMed Central  Google Scholar 

  • Eom JS, Luo D, Atienza-Grande G, Yang J, Ji C, Van Luu T, Huguet-Tapia JC, Char SN, Liu B, Nguyen H, Schmidt SM (2019) Diagnostic kit for rice blight resistance. Nat Biotechnol 37(11):1372–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faure D, Dessaux Y (2007) Quorum sensing as a target for developing control strategies for the plant pathogen Pectobacterium. Eur J Plant Pathol 119:353e65. https://doi.org/10.1007/s10658-007-9149-1

    Article  CAS  Google Scholar 

  • Fetzner S (2015) Quorum quenching enzymes. J Biotechnol 201:2–14. https://doi.org/10.1016/j.jbiotec.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275e98

    Article  Google Scholar 

  • Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol. https://doi.org/10.1155/2012/326452

    Article  PubMed  PubMed Central  Google Scholar 

  • Francis VI, Stevenson EC, Porter SL (2017) Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett 364:1–22. https://doi.org/10.1093/femsle/fnx104

    Article  CAS  Google Scholar 

  • Freeman BC, Battie GA (2008) An overview of plant defenses against pathogens and herbivores. In: The plant health instructor. Iowa State University, Ames, IA, USA, vol 94, pp 1–12

  • Frewer LJ, Norde W, Fischer ARH, Kampers FWH (2011) Nanotechnology in the agri-food sector: implications for the future. Wiley, Weinheim. https://doi.org/10.1002/9783527634798

    Book  Google Scholar 

  • Fu B, Zhai Y, Gleason M, Beattie GA (2021) Characterization of Erwinia tracheiphila bacteriophage FBB1 isolated from spotted cucumber beetles that vector E. tracheiphila. Phytopathology 111(12):2185–2194

    Article  CAS  PubMed  Google Scholar 

  • Fuchs TM (1998) Molecular mechanisms of bacterial pathogenicity. Naturwissenschaften 85:99–108

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Wang F, Niran J, Li N, Yin Y, Yu C et al (2021) Transcriptome analysis reveals defense-related genes and pathways against Xanthomonas campestris pv. vesicatoria in pepper (Capsicum annuum L.). PLoS ONE 16(3):e0240279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garge SS, Nerurkar AS (2017) Evaluation of quorum quenching Bacillus spp. for their biocontrol traits against Pectobacterium carotovorum subsp. carotovorum causing soft rot. Biocatal Agric Biotechnol 9:48–57

    Article  Google Scholar 

  • Gaucher M, Righetti L, Aubourg S, de Bernonville TD, Brisset MN, Chevreau E, Vergne E (2022) An Erwinia amylovora inducible promoter for improvement of apple fire blight resistance. Plant Cell Rep 41(7):1499

    Article  PubMed  PubMed Central  Google Scholar 

  • Georges F, Ray H (2017) Genome editing of crops: a renewed opportunity for food security. GM Crops Food 8(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Goyer C (2005) Isolation and characterization of phages Stsc1 and Stsc3 infecting Streptomyces scabiei and their potential as biocontrol agents. Can J Plant Pathol 27:210–216. https://doi.org/10.1080/07060660509507218

    Article  CAS  Google Scholar 

  • Grandclement C, Tannieres M, Morera S, Dessaux Y, Faure D (2016) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40:86–116. https://doi.org/10.1093/femsre/fuv038

    Article  CAS  PubMed  Google Scholar 

  • Green S, Studholme DJ, Laue BJ, Dorati F, Lovell H, Arnold D, Cottrell JE, Bridgett S, Blaxter M, Huitema E, Thwaites R, Sharp PM, Jackson RW, Kamoun S (2010) Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS ONE 5:e10224

    Article  PubMed  PubMed Central  Google Scholar 

  • Grijpstra J, Arenas J, Rutten L, Tommassen J (2013) Autotransporter secretion: varying on a theme. Res Microbiol 164:562–582

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Sharma A, Singh D, Chandel S, Sharma RC, Mahajan R, Gupta A (2015) Occurrence of crown gall caused by Agrobacterium tumefaciens on rose. Indian Phytopathol 68:229–230

    Google Scholar 

  • Habe I, Miyatake K, Nunome T, Yamasaki M, Hayashi T (2019) QTL analysis of resistance to bacterial wilt caused by Ralstonia solanacearum in potato. Breed Sci 69(4):592–600

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayward AC (1993) The hosts of Xanthomonas. In: Swings JC, Civerolo EL (eds) Xanthomonas. Chapman and Hall, London, pp 1–119

    Google Scholar 

  • He YW, Zhang LH (2008) Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol Rev 32:842–857. https://doi.org/10.1111/j.1574-6976.2008.00120.x

    Article  CAS  PubMed  Google Scholar 

  • Helman Y, Chernin L (2015) Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol Plant Pathol 16(3):316–329. https://doi.org/10.1111/mpp.12180

    Article  PubMed  Google Scholar 

  • Hossain A, Abdallah Y, Ali M, Masum M, Islam M, Li B et al (2019) Lemon-fruit-based green synthesis of zinc oxide nanoparticles and titanium dioxide nanoparticles against soft rot bacterial pathogen Dickeya dadantii. Biomoleculens 9(12):863

    Article  CAS  Google Scholar 

  • Ivanova A, Ivanova K, Tzanov T (2018) Inhibition of quorum-sensing: a new paradigm, in controlling bacterial virulence and biofilm formation. In: Kalia VC (ed) biotechnological applications of quorum sensing inhibitors. Springer, Berlin

    Google Scholar 

  • Jamiołkowska A (2020) Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. Agron 10(2):173

    Article  Google Scholar 

  • Jang H, Kim ST, Sang MK (2022) Suppressive effect of bioactive extracts of Bacillus sp. H8–1 and Bacillus sp. K203 on tomato wilt caused by Clavibacter michiganensis subsp. michiganensis. Microorganisms 10(2):403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Wang N (2020) Generation of homozygous canker-resistant citrus in the T0 generation using CRISPR-SpCas9p. Plant Biotechnol J 18(10):1990

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia H, Orbovic V, Jones JB, Wang N (2016) Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccDpthA4:dCsLOB1.3 infection. Plant Biotechnol J 14:1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, Wang N (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15:817–823. https://doi.org/10.1111/pbi.12677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):188. https://doi.org/10.1093/nar/gkt780

    Article  CAS  Google Scholar 

  • Jiang N, Yan J, Liang Y et al (2020) Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)—an updated review. Rice 13:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson M, Gaffney C, White V, Bechelli J, Balaraman R, Trad T (2020) Non-hydrolytic synthesis of caprylate capped cobalt ferrite nanoparticles and their application against Erwinia carotovora and Stenotrophomonas maltophilia. J Mater Chem B 8(47):10845–10853

    Article  CAS  PubMed  Google Scholar 

  • Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB, Momol MT (2007) Bacteriophages for plant disease control. Annu Rev Phytopathol 45:245–262

    Article  CAS  PubMed  Google Scholar 

  • Jones JB, Minsavage GV, Roberts PD, Johnson RR, Kousik CS, Subramanian S et al (2002) A non-hypersensitive resistance in pepper to the bacterial spot pathogen is associated with two recessive genes. Phytopathology 92(3):273–277

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi A, Nita M, Ishii T, Watanabe M, Noutoshi Y (2019) Biological control agent Rhizobium (=Agrobacterium) vitis strain ARK-1 suppresses expression of the essential and non-essential vir genes of tumorigenic R. vitis. BMC Res Notes 12:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Keen EC (2015) A century of phage research: bacteriophages and the shaping of modern biology. BioEssays 37:6–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan RAA, Najeeb S, Mao Z, Ling J, Yang Y, Li Y, Xie B (2020) Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic bacteria and Root-knot nematode. Microorganisms 8(3):401

    Article  PubMed  PubMed Central  Google Scholar 

  • Kifuji Y, Hanzaea H, Terasawa Y, Nishio T (2013) QTL analysis of black rot resistance in cabbage using newly developed EST-SNP markers. Euphytica 190:289–295

    Article  CAS  Google Scholar 

  • Kim SM, Reinke RF (2019) A novel resistance gene for bacterial blight in rice, Xa43 (t) identified by GWAS, confirmed by QTL mapping using a bi-parental population. PLoS ONE 14(2):e0211775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MH, Park SW, Kim YK (2011) Bacteriophages of Pseudomonas tolaasii for the biological control of brown blotch disease. J Appl Biol Chem 54:99–104. https://doi.org/10.3839/jksabc.2011.014

    Article  Google Scholar 

  • Kim YA, Moon H, Park CJ (2019) CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. Rice 12(1):1–13

    Article  Google Scholar 

  • Kost TD, Gessler C, Jänsch M, Flachowsky H, Patocchi A, Broggini GA (2015) Development of the first cisgenic apple with increased resistance to fire blight. PLoS ONE 10(12):e0143980

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotb OM, Abd El-Latif FM, Atawia AR, Saleh SS, El-Gioushy SF (2020) Green synthesis of chromium nanoparticles by aqueous extract of Melia azedarach, Artemisia herba-alba and bacteria fragments against Erwinia amylovora. Asian J Biotechnol Bioresour 6(2):22–30

    Article  Google Scholar 

  • Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185

    Article  CAS  PubMed  Google Scholar 

  • Kulshreshtha G, Velusamy P (2012) Antibacterial potential of bioactive compounds from fermented culture of Pseudomonas aeruginosa SRM1 against Xanthomonas oryzae pv. Oryzae Minerva Biotecnologica 24(2):29

    Google Scholar 

  • Kumar K, Gupta CS, Chander Y, Singh AK (2005) Antibiotic use in agriculture and its impact on the terrestrial environment. Adv Agric 87:1–54

    Article  CAS  Google Scholar 

  • Kumar P, Alok A, Kumar J (2020) Expanding the potential of CRISPR-Cas9 technology for crops improvement. In: Advances in synthetic biology. Springer

  • Kuzmanovic N, Smalla K, Gronow S, Puławska J (2018) Rhizobium tumorigenes sp. nov., a novel plant tumorigenic bacterium isolated from cane gall tumors on thornless blackberry. Sci Rep 8:9051

    Article  PubMed  PubMed Central  Google Scholar 

  • Kyrkou I, Pusa T, Ellegaard JL, Sagot M-F, Hansen LH (2018) Pierce’s disease of grapevines: a review of control strategies and an outline of an epidemiological model. Front Microbiol 9:2141

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Thapa Magar R, Kim HJ et al (2021) Complete genome sequence of a novel bacteriophage RpY1 infecting Ralstonia solanacearum strains. Curr Microbiol 78:2044–2050

    Article  CAS  PubMed  Google Scholar 

  • Levy SB (2002) The antibiotic paradox: how misuse of antibiotics destroys their curative powers. Perseus, Cambridge

    Google Scholar 

  • Li C, Li W, Zhou Z, Chen H, Xie C, Lin Y (2020a) A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice. Plant Biotechnol J 18(2):313

    Article  PubMed  Google Scholar 

  • Li W, Deng Y, Ning Y, He Z, Wang G-L (2020b) Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu Rev Plant Biol 71:575–603

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yang D, Cui J (2017) Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against Pseudomonas syringae pv. tomato. RSC Adv 7(62):38853–38860

    Article  CAS  Google Scholar 

  • Li Z, Zou L, Ye G, Xiong L, Ji Z, Zakria M, Hong N et al (2014) A potential disease susceptibility gene CsLOB of citrus is targeted by a major virulence effector PthA of Xanthomonas citri subsp. citri. Mol Plant 7:912–915

    Article  CAS  PubMed  Google Scholar 

  • Lim JA, Lee JS, Roh DH, Jung E, Oh K, Heu S (2013) Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1. J Microbiol Biotechnol 23(8):1147–1153

    Article  PubMed  Google Scholar 

  • Liu W, Liu J, Triplett L, Leach JE, Wang GL (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241

    Article  CAS  PubMed  Google Scholar 

  • Łobocka MB, Rose DJ, Plunkett G, Rusin M, Samojedny A, Lehnherr H et al (2004) Genome of bacteriophage P1. J Bacteriol 186:7032–7068. https://doi.org/10.1128/JB.186.21.7032-7068.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534

    Article  CAS  PubMed  Google Scholar 

  • Luo D, Huguet-Tapia JC, Raborn RT, White FF, Brendel VP, Yang B (2021) The Xa7 resistance gene guards the rice susceptibility gene SWEET14 against exploitation by the bacterial blight pathogen. Plant Commun 2(3):100164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malafaia CB, Jardelino ACS, Silva AG, de Souza EB, Macedo AJ, dos Santos Correia MT, Silva MV (2018) Effects of Caatinga plant extracts in planktonic growth and biofilm formation in Ralstonia solanacearum. Microb Ecol 75(3):555–561

    Article  PubMed  Google Scholar 

  • Mancini E, Camele I, Elshafie HS, De Martino L, Pellegrino C, Grulova D et al (2014) Chemical composition and biological activity of the essential oil of Origanum vulgare ssp. hirtum from different areas in the southern apennines (Italy). Chem Biodiver 11:639–651. https://doi.org/10.1002/cbdv.201300326

    Article  CAS  Google Scholar 

  • Mangal V, Sood S, Kumar V, Bhardwaj V (2022) Role of genetic resources in management of potato pests and diseases. In: Chakrabarti SK, Sharma S, Shah MA (eds) Sustainable management of potato pests and diseases. Springer, Singapore, pp 185–211

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer S, Machado M, Toth I, Salmond G, Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazo-Molina C, Mainiero S, Hind SR, Kraus CM, Vachev M, Maviane-Macia F, Lindeberg M, Saha S, Strickler SR, Feder A, Giovannoni JJ (2019) The Ptr1 locus of Solanum lycopersicoides confers resistance to race 1 strains of Pseudomonas syringae pv. tomato and to Ralstonia pseudosolanacearum by recognizing the type III effectors AvrRpt2 and RipBN. Mol Plant Microbe Interact 32(8):949–960

    Article  CAS  PubMed  Google Scholar 

  • McLeod A, Masimba T, Jensen T, Serfontein K, Coertze S (2017) Evaluating spray programs for managing copper resistant Pseudomonas syringae pv. Tomato populations on tomato in the Limpopo region of South Africa. Crop Protection 102: 32–42

  • Minsavage GV, Dahlbeck D, Whalen MC, Kearney B, Bonas U, Staskawicz BJ et al (1990) Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria–pepper interactions. Mol Plant Microbe Int 3:41e7

    Article  Google Scholar 

  • Mohammed TG, Gomah AA, Abd El-Rahman AF (2020) Biogenic synthesis of silver nanoparticles using Pimpinella anisum L seed aqueous extract and its inhibitory action against some phytopathogens. J Mater Sci Res Rev 6(2):30–39

    Google Scholar 

  • Molina L, Rezzonico F, De Fago G, Duffy B (2005) Autoinduction in Erwinia amylovora: evidence of an acyl-homoserine lactone signal in the fire blight pathogen. J Bacteriol 187:3206–3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moradian F, Ghorbani R, Biparva P (2018) Assessment of different antibacterial effects of Fe and Cu nanoparticles on Xanthomonas campestris growth and expression of its pathogenic gene hrpE. J Agric Sci Technol 20(5):1059–1070

    Google Scholar 

  • Morais TP, Zaini PA, Chakraborty S, Gouran H, Carvalho CP, Almeida-Souza HO, Souza JB, Santos PS, Goulart LR, Luz JM, Nascimento R (2019) The plant-based chimeric antimicrobial protein SlP14a-PPC20 protects tomato against bacterial wilt disease caused by Ralstonia solanacearum. Plant Sci 280:197–205

    Article  CAS  PubMed  Google Scholar 

  • Morales-Ubaldo AL, Rivero-Perez N, Avila-Ramos F, Aquino-Torres E, Prieto-Méndez J, Hetta HF, Zaragoza-Bastida A (2021) Bactericidal activity of Larrea tridentata hydroalcoholic extract against phytopathogenic bacteria. Agronomy 11(5):957

    Article  CAS  Google Scholar 

  • Nazir A, Dong Z, Liu J, Zhang X, Tahir RA, Ashraf N, Qing H, Peng D, Tong Y (2020) Sequence analysis of a jumbo bacteriophage, Xoo-sp14, that infects Xanthomonas oryzae pv. oryzae. Microbiol Resour Announc 9(48):e01072-20. https://doi.org/10.1128/MRA.01072-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Nazir A, Dong Z, Liu J, Tahir RA, Rasheed M, Qing H, Tong Y (2021) Genomic analysis of bacteriophage Xoo-sp13 infecting Xanthomonas oryzae pv. oryzae. Arch Virol 166(4):1263–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neves DA, Guimarães LMS, Ferraz HGM, Alfenas AC (2014) Favorable conditions for Xanthomonas axonopodis infection in Eucalyptus spp. Trop Plant Pathol 39:428–433

    Article  Google Scholar 

  • Ni P, Wang L, Deng B, Jiu S, Ma C, Zhang C, Wang S (2021) Characterization of a lytic bacteriophage against Pseudomonas syringae pv. actinidiae and its endolysin. Viruses 13(4):631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nino Liu D, Ronald P, Bogdanove A (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7:303–324

    Article  CAS  PubMed  Google Scholar 

  • Oliva R, Quibod IL (2017) Immunity and starvation: new opportunities to elevate disease resistance in crops. Curr Opin Plant Biol 38:84–91

    Article  CAS  PubMed  Google Scholar 

  • Oliva R, Ji C, Atienza Grande G, Huguet Tapia JC, Perez Quintero A, Li T, Yang B (2019) Broad-spectrum resistance to bacterial blight in rice using genome editing. Nature Biotechnol 37(11):1344–1350

    Article  CAS  Google Scholar 

  • Orzali L, Valente MT, Scala V, Loreti S, Pucci N (2020) Antibacterial activity of essential oils and Trametes versicolor extract against Clavibacter michiganensis subsp. michiganensis and Ralstonia solanacearum for seed treatment and development of a rapid in vivo assay. Antibiotics 9(9):628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandiyaraj P, Singh TH, Reddy KM, Sadashiva AT, Gopalakrishnan C, Reddy AC, Pattanaik A, Reddy DL (2019) Molecular markers linked to bacterial wilt (Ralstonia solanacearum) resistance gene loci in eggplant (Solanum melongena L.). Crop Prot 124:104822

    Article  CAS  Google Scholar 

  • Park J, Lee GM, Kim D, Park DH, Oh CS (2018) Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear. Plant Pathol J 34(5):445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkinson N, DeVos P, Pirhonen M, Elphinstone J (2014) Dickeya aquatica sp. nov., isolated from water-ways. Int J Syst Evol Microbiol 64:2264–2266

    Article  CAS  PubMed  Google Scholar 

  • Parveen A, Siddiqui ZA (2021) Impact of silicon dioxide nanoparticles on growth, photosynthetic pigments, proline, activities of defense enzymes and some bacterial and fungal pathogens of tomato. Vegetos 35(1): 83–93

  • Pedron J, Bertrand C, Taghouti G, Portier P, Barny MA (2019) 511 Pectobacterium aquaticum sp. nov., isolated from waterways. Int J Syst Evol Microbiol 69:745–775

    Article  CAS  PubMed  Google Scholar 

  • Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15:1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pompili V, Dalla Costa L, Piazza S, Pindo M, Malnoy M (2020) Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotechnol J 18(3):845–858

    Article  CAS  PubMed  Google Scholar 

  • Potnis N, Minsavage G, Smith JK, Hurlbert JC, Norman D, Rodrigues R et al (2012) Avirulence proteins AvrBs7 from Xanthomonas gardneri and AvrBs1.1 from Xanthomonas euvesicatoria contribute to a novel gene-for-gene interaction in pepper. Mol Plant Microbe Interact 25(3):307–320

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Purić J, Vieira G, Cavalca LB, Sette LD, Ferreira H, Vieira MLC, Sass DC (2018) Activity of Antarctic fungi extracts against phytopathogenic bacteria. Lett Appl Microbiol 66(6):530–536

    Article  PubMed  Google Scholar 

  • Ramírez M, Neuman B, Ramírez CA (2020) Bacteriophages as promising agents for the biological control of moko disease (Ralstonia solanacearum) of banana. Biol Control (in Press). https://doi.org/10.1016/j.biocontrol.2020.104238

    Article  Google Scholar 

  • Raymaekers K, Ponet L, Holtappels D, Berckmans B, Cammue BP (2020) Screening for novel biocontrol agents applicable in plant disease management—a review. Biol Control 144:104240

    Article  CAS  Google Scholar 

  • Rienzie R, Sendanayake L, De Costa D, Hossain A, Brestic M, Skalicky M, Adassooriya NM (2021) Assessing the carboxymethylcellulose copper-montmorillonite nanocomposite for controlling the infection of Erwinia carotovora in Potato (Solanum tuberosum L.). Nanomaterials 11(3):802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez M, Torres M, Blanco L et al (2020) Plant growth-promoting activity and quorum quenching-mediated biocontrol of bacterial phytopathogens by Pseudomonas segetis strain P6. Sci Rep 10:4121

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy V, Fernandes R, Tsao CY, Bentley WE (2010) Cross species quorum quenching using a native AI-2 processing enzyme. ACS Chem Biol 5:223–232. https://doi.org/10.1021/cb9002738

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Vorholter FJ, Potnis N, Jones JB, Van Sluys MA, Bogdanove AJ, Dow JM (2011) Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat Rev Microbiol 9:344–355

    Article  CAS  PubMed  Google Scholar 

  • Salmond GPC (1994) Secretion of extracellular virulence factors by plant pathogenic bacteria. Annu Rev Phytopathol 32:181–200

    Article  CAS  Google Scholar 

  • Sánchez B, Barreiro-Hurle J, Soto Embodas I, Rodriguez-Cerezo E (2019) The Impact Indicator for Priority Pests (I2P2): a tool for ranking pests according to Regulation (EU) No 2016/2031. EUR29793 EN, Publications Office of the European Union, Luxembourg. July

  • Scheben A, Edwards D (2018) Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biol 19(1):1–7

    Article  Google Scholar 

  • Schmidt SM, Luu VT, Buchholzer M, Arra Y, Frommer WB (2021) Options for tackling pathogen resistance by genome editing in rice. CABI Reviews

  • Schwarczinger I, Bozsó Z, Szatmári Á, Süle S, Szabó Z, Nagy G, Király L (2018) First report of bacterial leaf spot caused by the quarantine pathogen Xanthomonas arboricola pv. pruni on peach in Hungary. Plant Dis 102(8):1654

    Article  Google Scholar 

  • Sebaihia M, Bocsanczy AM, Biehl BS, Quail MA, Perna NT, Glasner JD, De Clerck GA, Cartinhour S, Schneider DJ, Bentley SD, Parkhill J, Beer SV (2010) Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946. J Bacteriol 192:2020–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekeli R, Nazaruddin NH, Tamizi AA, Amin NM, Wee CY, Sarip J, Zulkifli Z (2019) Enhancing Eksotika papaya resistance to dieback disease through quorum quenching. J Trop Plant Physiol 11(1):1–9

    Google Scholar 

  • Shaheen HA, Issa MY (2020) In vitro and in vivo activity of Peganum harmala L. alkaloids against phytopathogenic bacteria. Sci Hortic 264:1089. https://doi.org/10.1016/j.scienta.2019.108940

    Article  CAS  Google Scholar 

  • Shahryari F, Rabiei Z, Sadighian S (2020) Antibacterial activity of copper nanoparticles synthesized with sumac extract and copper-chitosan nanocomposite against some plant pathogenic bacteria in laboratory. https://doi.org/10.22084/ab.2020.19130.1410

  • Shan Q et al (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410

    Article  CAS  PubMed  Google Scholar 

  • Sharma BB, Kalia P, Yadava DK, Dingh D, Sharma TR (2016) Genetics and molecular mapping of black rot resistance locus Xca1bc on chromosome B-7 in Ethiopian mustard (Brassica carinata A. Braun). PLoS ONE 11:e0152290

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Gupta AK (2017) New insights in the biological control of crown gall through native Agrobacterium radiobacter strain UHFBA-218. Plant Dis Res 32:137–152

    Google Scholar 

  • Sharma A, Gupta AK, Mahajan R, Bharti MPK (2017) Antagonistic potential of native agrocin producing non-pathogenic Agrobacterium tumefaciens strain UHFBA-218 in control of crown gall on peach. Phytoprotection 97:1–11

    Article  Google Scholar 

  • Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML, Vallad GE, Jones JB (2022) Future of bacterial disease management in crop production. Annu Rev Phytopathol 60:259–282

    Article  PubMed  Google Scholar 

  • Shrinet K, Singh RK, Chaurasia AK, Tripathi A, Kumar A (2021) Bioactive compounds and their future therapeutic applications. In: Natural bioactive compounds. Academic Press, pp 337–362

  • Siddique M, Din N, Ahmad M et al (2020) Bioefficacy of some aqueous phytoextracts against ClavibacterMichiganensis subsp. Michiganensis (Smith), the cause of bacterial canker of tomato. Gesunde Pflanzen 72:207–217

    Article  CAS  Google Scholar 

  • Singh S, Dey SS, Bhatia R, Batley J, Kumar R (2018) Molecular breeding for resistance to black rot [Xanthomonas campestris pv. campestris (Pammel) Dowson] in Brassicas: recent advances. Euphytica 214(10):1–7

    Article  Google Scholar 

  • Siphathele S, Lucy NM, Divine YS, Teresa AC (2018) Quorum sensing in gram-negative plant pathogenic bacteria. Adv Plant Pathol. https://doi.org/10.5772/intechopen.78003

    Article  Google Scholar 

  • Smargon AA et al (2017) Cas13b is a type VI-B CRISPRassociated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell 65:618–630. https://doi.org/10.1016/j.molcel.2016.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobiczewski P, Lakimova ET, Mikiciński A, Węgrzynowicz Lesiak E, Dyki B (2017) Necrotrophic behaviour of Erwinia amylovora in apple and tobacco leaf tissue. Plant Pathol 66:842–855

    Article  CAS  Google Scholar 

  • Soengas P, Hand P, Vicente JG, Pole JM, Pink DAC (2007) Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor Appl Genet 114:637–645

    Article  CAS  PubMed  Google Scholar 

  • Sofi W, Gowri M, Shruthilaya M, Rayala S, Venkatraman G (2012) Silver nanoparticles as an antibacterial agent for endodontic infections. BMC Infect Dis 12(1):60

    Article  Google Scholar 

  • Songstad DD, Petolino JF, Voytas DF, Reichert NA (2017) Genome editing of plants. Crit Rev Plant Sci 36:1–23

    Article  Google Scholar 

  • Stall RE, Jones JB, Minsavage GV (2009) Durability of resistance in tomato and pepper to Xanthomonads causing bacterial spot. Annu Rev Phytopathol 47(1):265–284

    Article  CAS  PubMed  Google Scholar 

  • Stefani E, Obradovic A, Gasicc K, Altin I, Nagy IK, Kovacs T (2021) Bacteriophage-mediated control of phytopathogenic Xanthomonads: a promising green solution for the future. Microorganisms 9:1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundin GW, Castiblanco LF, Yuan X, Zeng Q, Yang CH (2016) Bacterial disease management: challenges, experience, innovation and future prospects: challenges in bacterial molecular plant pathology. Mol Plant Pathol 17(9):1506–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunitha S, Rock CD (2020) CRISPR/Cas9-mediated targeted mutagenesis of TAS4 and MYBA7 loci in grapevine rootstock 101–14. Transgenic Res 29(3):355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczesny R, Jordan M, Schramm C, Schulz S, Cogez V et al (2010) Functional characterization of the Xcs and Xps type II secretion systems from the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria. New Phytol 187:983–1002

    Article  CAS  PubMed  Google Scholar 

  • Tahir J, Hoyte S, Bassett H, Brendolise C, Chatterjee A, Templeton K, Deng C, Crowhurst R, Montefiori M, Morgan E, Wotton A (2019) Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Pseudomonas syringae pv. actinidiae in kiwifruit (Actinidia chinensis). Hortic Res 1:6

    Google Scholar 

  • Tegli S, Biancalani C, Ignatov AN, Osdaghi E (2020) A powerful LAMP weapon against the threat of the quarantine plant pathogen Curtobacterium flaccumfaciens pv. flaccumfaciens. Microorganisms 8(11):1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas NC, Hendrich CG, Gill US, Allen C, Hutton SF, Schultink A (2020) The immune receptor Roq1 confers resistance to the bacterial pathogens Xanthomonas, Pseudomonas syringae, and Ralstonia in tomato. Front Plant Sci 11:463

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Zhao Y, Yuan X, Yi J, Fan J, Xu Z et al (2016) Dickeya fangzhongdai sp. nov., a plant-pathogenic bacterium isolated from pear trees (Pyrus pyrifolia). Int JSyst Evol Microbiol 66:2831–2835

    Article  CAS  Google Scholar 

  • Toth IK, Bell KS, Holeva MC, Birch PR (2003) Soft rot erwiniae: from genes to genomes. Mol Plant Pathol 4:17–30

    Article  CAS  PubMed  Google Scholar 

  • Toth IK, van der Wolf JM, Saddler G, Lojkowska E, Hélias V, Pirhonen M, Tsror L, Elphinstone JG (2011) Dickeya species: an emerging problem for potato production in Europe. Plant Pathol 60:385–399

    Article  Google Scholar 

  • Tripathi JN, Ntui VO, Shah T, Tripathi L (2021) CRISPR/Cas9-mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease. Plant Biotechnol J 19(7):1291–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Schie CC, Takken FL (2014) Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol 52:551–581

    Article  PubMed  Google Scholar 

  • Vasilchenko AS, Poshvina D, Sidorov R, Iashnikov A, Rogozhin EA, Vasilchenko A (2022) Oak Bark (Quercus sp. cortex) protects plants through the inhibition of quorum sensing mediated virulence of Pectobacterium carotovorum. https://doi.org/10.21203/rs.3.rs-1360881/v1

  • Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  Google Scholar 

  • Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12:e1001877. https://doi.org/10.1371/journal.pbio.1001877

    Article  PubMed  PubMed Central  Google Scholar 

  • Vu NT, Oh CS (2020) Bacteriophage usage for bacterial disease management and diagnosis in plants. Plant Pathol J 36(3):204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wairuri CK, van der Waals JE, van Schalkwyk A, Theron J (2012) Ralstonia solanacearum needs Flp pili for virulence on potato. Mol Plant Microbe Interact 25:546–556

    Article  CAS  PubMed  Google Scholar 

  • Walsh CT (2003) Antibiotics: actions, origins, resistance. ASM Press, Washington

    Book  Google Scholar 

  • Wang L, Yang Li Y, Gan YL, Yang F, Liang XL, Li WL, Le JB (2019a) Two lytic transglycosylases of Xanthomonas campestris pv. campestris associated with cell separation and type III secretion system, respectively. FEMS Microbiol Lett 366:1–18

    Article  Google Scholar 

  • Wang L, Chen S, Peng A, Xie Z, He Y, Zou X (2019b) CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xanthomonas citri subsp. citri in Wanjincheng orange (Citrus sinensis (L.) Osbeck). Plant Biotechnol Rep 13(5):501–510

    Article  CAS  Google Scholar 

  • Wang H, Liao L, Chen S, Zhang LH (2020) A quorum quenching bacterial isolate contains multiple substrate-inducible genes conferring degradation of diffusible signal factor. Appl Environ Microbiol 86:e02930-e3019. https://doi.org/10.1128/AEM.02930-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114. https://doi.org/10.1128/MMBR.64.1.69-114.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Li Y, Xu Z, Yan J, Wang Y, Wang Y, Cheng G, Zou L, Chen G (2022) TALE-induced immunity against the bacterial blight pathogen Xanthomonas oryzae pv oryzae in rice. Phytopathol Res 4(1):1

    Article  Google Scholar 

  • Yaar Bar S, Dor S, Erov M, Afriat-Jurnou L (2021) Identification and characterization of a new quorum-quenching N-acyl homoserine lactonase in the plant pathogen Erwinia amylovora. Agric Food Chem 69(20):5652–5662

    Article  CAS  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79:513–516

    Article  Google Scholar 

  • Ye T, Zhou T, Fan X, Bhatt P, Zhang L, Chen S (2019) Acinetobacter lactucae strain QL-1, a novel quorum quenching candidate against bacterial pathogen Xanthomonas campestris pv. campestris. Front Microbiol 10:2867

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye T, Zhang W, Feng Z, Fan X, Xu X, Mishra S et al (2020) Characterization of a novel quorum-quenching bacterial strain, Burkholderia anthina HN-8, and its biocontrol potential against black rot disease caused by Xanthomonas campestris pv. campestris. Microorganisms 8(10):1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaczek-Moczydłowska MA, Young GK, Trudgett J, Plahe C, Fleming CC, Campbell K, O’Hanlon R (2020) Phage cocktail containing Podoviridae and Myoviridae bacteriophages inhibits the growth of Pectobacterium spp. under in vitro and in vivo conditions. PLoS ONE 15(4):e0230842

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaka A et al (2018) Natural variations in the promoter of OsSWEET13 and OsSWEET14 expand the range of resistance against Xanthomonas oryzae pv. oryzae. PLoS ONE 13:e0203711

    Article  PubMed  PubMed Central  Google Scholar 

  • Zechner EL, Lang S, Schildbach JF (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B 367:1073–1087

    Article  CAS  Google Scholar 

  • Zhang W, Fan X, Li J, Ye T, Mishra S, Zhang L, Chen S (2021) Exploration of the quorum-quenching mechanism in Pseudomonas nitroreducens W-7 and its potential to attenuate the virulence of Dickeya zeae EC1. Front Microbiol 12: 694161. https://doi.org/10.3389/fmicb.2021.694161

  • Zhou L, Huang TW, Wang JY, Sun S, Chen G, Poplawsky A, He YW (2013) The rice bacterial pathogen Xanthomonas oryzae pv. oryzae produces 3-hydroxybenzoic acid and 4-hydroxybenzoic acid via XanB2 for use in xanthomonadin, ubiquinone, and exopolysaccharide biosynthesis. Mol Plant Microbe Interact 26(10):1239–1248

    Article  CAS  PubMed  Google Scholar 

  • Zhou J et al (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82:632–643. https://doi.org/10.1111/tpj.12838

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zhang LH, Cámara M, He YW (2017a) The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover. Trends Microbiol 11:974. https://doi.org/10.1016/j.tim.2016.11.013

    Article  CAS  Google Scholar 

  • Zhou P, Jia R, Chen SC, Xu LZ, Peng AH, Lei TG, Li Q et al (2017b) Cloning and expression analysis of four citrus WRKY genes responding to Xanthomon asaxonopodis pv. citri. Acta Horticult Sin 44(3):452–462

    Google Scholar 

  • Zhou Z, Wu X, Li J, Zhang Y, Huang Y, Zhang W et al (2022) A novel quorum quencher, Rhodococcus pyridinivorans XN-36, is a powerful agent for the biocontrol of soft rot disease in various host plants. Biol Control 169:104889

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Plant Pathology, Dr. Y. S. Parmar University of Horticulture and Forestry Solan, for continuous support.

Funding

There is no financial support for this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally for compilation of manuscript.

Corresponding author

Correspondence to Aditi Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All authors approved the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Gupta, A.K. & Devi, B. Current trends in management of bacterial pathogens infecting plants. Antonie van Leeuwenhoek 116, 303–326 (2023). https://doi.org/10.1007/s10482-023-01809-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-023-01809-0

Keywords

Navigation