Skip to main content

Advertisement

Log in

Abundant and diverse endophytic bacteria associated with medicinal plant Arctium lappa L. and their potential for host plant growth promoting

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Arctium lappa L. is one of the medicinal and food homologous plants in China, which is rich in nutrients and medicinal ingredients. The use of plant growth-promoting (PGP) endophytic bacteria is an alternative to reducing chemical fertilizers in agricultural production. The aim of this study was to analyze the diversity of endophytic bacteria in different cultivars of A. lappa L. collected from two geographical locations in China and evaluate PGP traits of the isolates and their potential PGP ability in greenhouse condition. Endophytic bacterial community was investigated by culture-dependent and culture-independent methods. Isolates were screened and investigated for multiple PGP traits, and representative strains were inoculated host seedlings to evaluate the growth promoting effect. A total of 348 endophytic bacteria were obtained and they were distributed into 4 phyla and 30 genera. In addition, high throughput sequencing revealed more abundant bacterial community, including 17 bacterial phyla and 207 genera. A high proportion of PGP traits were detected, including production of indole acetic acid, siderophore, ammonia and phosphate solubilization. Four representative strains with multiple PGP traits of the most dominant genera (Bacillus, Pantoea, Microbacterium and Pseudomonas) were further selected for host inoculation and growth promoting evaluation, and they significantly increase seedlings length, root length and fresh weight. This study demonstrated that A. lappa L. harbors abundant endophytic bacteria, and some endophytic bacteria showed good potential for the development of microbial fertilizer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afzal I, Shinwari ZK, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49

    Article  PubMed  CAS  Google Scholar 

  • Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606

    Article  PubMed  PubMed Central  Google Scholar 

  • Biessy A, Filion M (2018) Phenazines in plant-beneficial Pseudomonas spp.: biosynthesis, regulation, function and genomics. Environ Microbiol 20(11):3905–3917

    Article  PubMed  CAS  Google Scholar 

  • Cajthaml T, Macek T, Uhlik O (2018) Diversity of root-associated microbial populations of Tamarix parviflora cultivated under various conditions. Appl Soil Ecol 125:264–272

    Article  Google Scholar 

  • Chan YS, Cheng LN, Wu JH, Chan E, Kwan YW, Lee SM, Leung GP, Yu PH, Chan SW (2011) A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology 19(5):245–254

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry V, Sharma S, Bansal K, Patil PB (2017) Glimpse into the genomes of rice endophytic bacteria: diversity and distribution of firmicutes. Front Microbiol 7:2115

    Article  PubMed  PubMed Central  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Zhang C, Ju X, Xiong Y, Xing K, Qin S (2019) Community composition and metabolic potential of endophytic actinobacteria from coastal salt marsh plants in Jiangsu. China Front Microbiol 10:1063

    Article  PubMed  Google Scholar 

  • Chen M, Xu J, Wang Y, Wang Z, Guo L, Li X, Huang L (2020) Arctium lappa L. polysaccharide can regulate lipid metabolism in type 2 diabetic rats through the SREBP-1/SCD-1 axis. Carbohydr Res 494:108055

    Article  PubMed  CAS  Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chialva M, Lanfranco L, Bonfante P (2021) The plant microbiota: composition, functions, and engineering. Curr Opin Biotechnol 73:135–142

    Article  PubMed  Google Scholar 

  • Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costa Júnior PSP, Cardoso FP, Martins AD, Teixeira Buttrós VH, Pasqual M, Dias DR, Schwan RF, Dória J (2020) Endophytic bacteria of garlic roots promote growth of micropropagated meristems. Microbiol Res 241:126585

    Article  PubMed  Google Scholar 

  • Döbereiner HG, Evans E, Seifert U, Wortis M (1995) Spinodal fluctuations of budding vesicles. Phys Rev Lett 75:3360–3363

    Article  PubMed  Google Scholar 

  • El-Sayed WS, Akhkha A, El-Naggar MY, Elbadry M (2014) In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front Microbiol 5:651

    Article  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    Article  PubMed  CAS  Google Scholar 

  • Fadiji AE, Ayangbenro AS, Babalola OO (2020) Metagenomic profiling of the community structure, diversity, and nutrient pathways of bacterial endophytes in maize plant. Antonie Van Leeuwenhoek 113(11):1559–1571

    Article  PubMed  CAS  Google Scholar 

  • Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriss R (2018) Bacillus velezensis FZB42 in 2018: the Gram-positive model strain for plant growth promotion and biocontrol. Front Microbiol 9:2491

    Article  PubMed  PubMed Central  Google Scholar 

  • Franco-Correaa M, Quintanaa A, Duquea C, Suareza C, Rodrígueza MX, Bareab JM (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Article  Google Scholar 

  • Gao Q, Yang M, Zuo Z (2018) Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacol Sin 39(5):787–801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao JL, Xue J, Yan H, Tong S, Sayyar Khan M, Wang LW, Mao XJ, Zhang X, Sun JG (2019) Pantoea endophytica sp. nov., novel endophytic bacteria isolated from maize planting in different geographic regions of northern China. Syst Appl Microbiol 42(4):488–494

    Article  PubMed  Google Scholar 

  • Gong Y, Bai JL, Yang HT, Zhang WD, Xiong YW, Ding P, Qin S (2018) Phylogenetic diversity and investigation of plant growth-promoting traits of actinobacteria in coastal salt marsh plant rhizospheres from Jiangsu. China Syst Appl Microbiol 41(5):516–527

    Article  PubMed  CAS  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26(1):192–195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansen BL, Pessotti RC, Fischer MS, Collins A, El-Hifnawi L, Liu MD, Traxler MF (2020) Cooperation, competition, and specialized metabolism in a simplified root nodule microbiome. mBio 11(4):e01917-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Harman G, Khadka R, Doni F, Uphoff N (2021) Benefits to plant health and productivity from enhancing plant microbial symbionts. Front Plant Sci 11:610065

    Article  PubMed  PubMed Central  Google Scholar 

  • Hols P, Ferain T, Garmyn D (1994) Use of expression secretion signals and vector amylase and levanase expression. Appl Environ Microbiol 60:1401–1403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang C, Bu Y, Shan Z, Dai C (2016) Research advances in mechanisms of watermelon continuous cropping diseases and its biological control. Chin J Ecol 35:1670–1676

    Google Scholar 

  • Jain R, Bhardwaj P, Pandey SS, Kumar S (2021) Arnebia euchroma, a plant species of cold desert in the Himalayas, harbors beneficial cultivable endophytes in roots and leaves. Front Microbiol 12:696667

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaewkla O, Franco CM (2013) Rational approaches to improving the isolation of endophytic actinobacteria from Australian native trees. Microb Ecol 65:384–393

    Article  PubMed  Google Scholar 

  • Kidd PS, Álvarez A, Álvarez-López V, Cerdeira-Pérez A, Rodríguez-Garrido B, Prieto-Fernández Á, Chalot M (2021) Beneficial traits of root endophytes and rhizobacteria associated with plants growing in phytomanaged soils with mixed trace metal-polycyclic aromatic hydrocarbon contamination. Chemosphere 277:130272

    Article  PubMed  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  PubMed  CAS  Google Scholar 

  • Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48(9):772–786

    Article  PubMed  CAS  Google Scholar 

  • Krishnamoorthy A, Agarwal T, Kotamreddy JNR, Bhattacharya R, Mitra A, Maiti TK, Maiti MK (2020) Impact of seed-transmitted endophytic bacteria on intra- and inter-cultivar plant growth promotion modulated by certain sets of metabolites in rice crop. Microbiol Res 241:126582

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Kong HG, Song GC, Ryu CM (2021) Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. ISME J 15(1):330–347

    Article  PubMed  CAS  Google Scholar 

  • Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428

    Article  PubMed  Google Scholar 

  • Li X, Zhao Z, Kuang P, Shi X, Wang Z, Guo L (2019) Regulation of lipid metabolism in diabetic rats by Arctium lappa L. polysaccharide through the PKC/NF-κB pathway. Int J Biol Macromol 136:115–122

    Article  PubMed  CAS  Google Scholar 

  • Li X, Li B, Cai S, Zhang Y, Xu M, Zhang C et al (2020) Identification of rhizospheric actinomycete Streptomyces lavendulae SPS-33 and the inhibitory effect of its volatile organic compounds against Ceratocystis fimbriata in postharvest sweet potato (Ipomoea batatas (L.) Lam.). Microorganisms 8:319

    Article  PubMed Central  CAS  Google Scholar 

  • Liotti RG, da Silva Figueiredo MI, da Silva GF, de Mendonça EAF, Soares MA (2018) Diversity of cultivable bacterial endophytes in Paullinia cupana and their potential for plant growth promotion and phytopathogen control. Microbiol Res 207:8–18

    Article  PubMed  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marag PS, Suman A (2018) Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiol Res 214:101–113

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Romero E, Aguirre-Noyola JL, Taco-Taype N, Martínez-Romero J, Zuñiga-Dávila D (2020) Plant microbiota modified by plant domestication. Syst Appl Microbiol 43(5):126106

    Article  PubMed  Google Scholar 

  • Mathur P, Roy S (2021) Insights into the plant responses to drought and decoding the potential of root associated microbiome for inducing drought tolerance. Physiol Plant 172(2):1016–1029

    Article  PubMed  CAS  Google Scholar 

  • Mello IS, Targanski S, Pietro-Souza W, Frutuoso Stachack FF, Terezo AJ, Soares MA (2020) Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. Ecotoxicol Environ Saf 202:110818

    Article  PubMed  CAS  Google Scholar 

  • Mina D, Pereira JA, Lino-Neto T, Baptista P (2020) Epiphytic and endophytic bacteria on olive tree phyllosphere: exploring tissue and cultivar effect. Microb Ecol 80(1):145–157

    Article  PubMed  Google Scholar 

  • Niu B, Paulson JN, Zheng X, Kolter R (2017) Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci U S A 114(12):E2450–E2459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papik J, Folkmanova M, Polivkova-Majorova M, Suman J, Uhlik O (2020) The invisible life inside plants: deciphering the riddles of endophytic bacterial diversity. Biotechnol Adv 44:107614

    Article  PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  PubMed  CAS  Google Scholar 

  • Pereira SIA, Monteiro C, Vega AL, Castro PML (2016) Endophytic culturable bacteria colonizing Lavandula dentata L. plants: isolation, characterization and evaluation of their plant growth-promoting activities. Ecol Eng 87:91–97

    Article  Google Scholar 

  • Phour M, Sehrawat A, Sindhu SS, Glick BR (2020) Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiol Res 241:126589

    Article  PubMed  CAS  Google Scholar 

  • Polivkova M, Suman J, Strejcek M, Kracmarova M, Hradilova M, Filipova A, Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152(1):95–103

    Article  Google Scholar 

  • Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna. China Appl Environ Microbiol 75:6176–6186

    Article  PubMed  CAS  Google Scholar 

  • Qin S, Xing K, Jiang JH, Xu LH, Li WJ (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89(3):457–473

    Article  PubMed  CAS  Google Scholar 

  • Qin S, Chen HH, Zhao GZ, Li J, Zhu WY, Xu LH, Jiang JH, Li WJ (2012) Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ Microbiol Rep 4(5):522–531

    Article  PubMed  Google Scholar 

  • Qin S, Zhang YJ, Yuan B, Xu PY, Xing K, Wang J, Jiang JH (2014) Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant Soil 374:753–766

    Article  CAS  Google Scholar 

  • Qin S, Miao Q, Feng WW, Wang Y, Zhu X, Xing K, Jiang JH (2015) Biodiversity and plant growth promoting traits of culturable endophytic actinobacteria associated with Jatropha curcas L. growing in Panxi dry-hot valley soil. Appl Soil Ecol 93:47–55

    Article  Google Scholar 

  • Qin S, Feng WW, Wang TT, Ding P, Xing K, Jiang JH (2017) Plant growth-promoting effect and genomic analysis of the beneficial endophyte Streptomyces sp. KLBMP 5084 isolated from halophyte Limonium sinense. Plant Soil 416:117–132

    Article  CAS  Google Scholar 

  • Qin S, Feng WW, Zhang YJ, Wang TT, Xiong YW, Xing K (2018) Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180. Appl Environ Microbiol 84(19):e01533-e1618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N, Dhaliwal HS, Saxena AK (2020) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113(8):1075–1107

    Article  PubMed  CAS  Google Scholar 

  • Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224

    Article  Google Scholar 

  • Rat A, Naranjo HD, Krigas N, Grigoriadou K, Maloupa E, Alonso AV, Schneider C, Papageorgiou VP, Assimopoulou AN, Tsafantakis N, Fokialakis N, Willems A (2021) Endophytic bacteria from the roots of the medicinal plant Alkanna tinctoria Tausch (Boraginaceae): exploration of plant growth promoting properties and potential role in the production of plant secondary metabolites. Front Microbiol 12:633488

    Article  PubMed  PubMed Central  Google Scholar 

  • Reysenbach A, Pace N (1995) Reliable amplification of hyperthermophilic archaeal 16S rRNA genes by the polymerase chain reaction. In: Robb F (ed), Archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 101– 107

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda Mdel C, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  PubMed  CAS  Google Scholar 

  • Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ (2020) Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol 128(6):1583–1594

    Article  PubMed  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophore. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Song Z, Lu Y, Liu X, Wei C, Oladipo A, Fan B (2020) Evaluation of Pantoea eucalypti FBS135 for pine (Pinus massoniana) growth promotion and its genome analysis. J Appl Microbiol 129(4):958–970

    Article  PubMed  CAS  Google Scholar 

  • Thomas P, Shaik SP (2020) Molecular profiling on surface-disinfected tomato seeds reveals high diversity of cultivation-recalcitrant endophytic bacteria with low shares of spore-forming Firmicutes. Microb Ecol 79(4):910–924

    Article  PubMed  CAS  Google Scholar 

  • Tian XY, Zhang CS (2017) Illumina-based analysis of endophytic and rhizosphere bacterial diversity of the coastal halophyte Messerschmidia sibirica. Front Microbiol 8:2288

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullah A, Nisar M, Ali H, Hazrat A, Hayat K, Keerio AA, Ihsan M, Laiq M, Ullah S, Fahad S, Khan A, Khan AH, Akbar A, Yang X (2019) Drought tolerance improvement in plants: an endophytic bacterial approach. Appl Microbiol Biotechnol 103(18):7385–7397

    Article  PubMed  CAS  Google Scholar 

  • Vo QAT, Ballard RA, Barnett SJ et al (2021) Isolation and characterisation of endophytic actinobacteria and their effect on the growth and nodulation of chickpea (Cicer arietinum). Plant Soil 466:357–371

    Article  CAS  Google Scholar 

  • Vorholt JA, Vogel C, Carlström CI, Müller DB (2017) Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22(2):142–155

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Chen W, Liu S, Wu J, Zhu Y, Qin L, Zhu B (2021) Beneficial relationships between endophytic bacteria and medicinal plants. Front Plant Sci 12:646146

    Article  PubMed  PubMed Central  Google Scholar 

  • Xing K, Qin S, Bian GK, Zhang YJ, Zhang WD, Dai CC et al (2012) Pseudonocardia nantongensis sp. nov., a novel endophytic actinomycete isolated from the coastal halophyte Tamarix chinensis Lour. Antonie Van Leeuwenhoek 102:659–667

    Article  PubMed  CAS  Google Scholar 

  • Xiong YW, Ju XY, Li XW, Gong Y, Xu MJ, Zhang CM, Yuan B, Lv ZP, Qin S (2020a) Fermentation conditions optimization, purification, and antioxidant activity of exopolysaccharides obtained from the plant growth-promoting endophytic actinobacterium Glutamicibacter halophytocola KLBMP 5180. Int J Biol Macromol 153:1176–1185

    Article  PubMed  CAS  Google Scholar 

  • Xiong YW, Li XW, Wang TT, Gong Y, Zhang CM, Xing K, Qin S (2020b) Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress. Ecotoxicol Environ Saf 194:110374

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Wang F, Zhang M, Ou T, Wang R, Strobel G, Xiang Z, Zhou Z, Xie J (2019) Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiol Res 229:126328

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Yang J, Wang E, Li B, Yuan H (2015) Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves. Front Microbiol 6:867

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li T, Liu Y, Li X, Zhang C, Feng Z, Peng X, Li Z, Qin S, Xing K (2019) Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes. J Agric Food Chem 67(13):3702–3710

    Article  PubMed  CAS  Google Scholar 

  • Zhuang L, Li Y, Wang Z, Yu Y, Zhang N, Yang C, Zeng Q, Wang Q (2021) Synthetic community with six Pseudomonas strains screened from garlic rhizosphere microbiome promotes plant growth. Microb Biotechnol 14(2):488–502

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Promoting Science and Technology Innovation Project of Xuzhou City (KC21130), North Jiangsu Science and Technology Special Project of Jiangsu Province (XZ-SZ202146), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (17KJA180004).

Author information

Authors and Affiliations

Authors

Contributions

J-QL: Investigation, Methodology, Data curation, Formal analysis. S-MC: Methodology, Data curation, Formal analysis. C-MZ: Writing—review & editing. M-JX: Data curation, Formal analysis. KX: Writing—review & editing. Cheng-Guo Li: Investigation. KL: Sampling. Y-QZ: Methodology, Formal analysis. SQ: Conceptualization, Project administration, Supervision, Funding acquisition, Writing—review & editing.

Corresponding authors

Correspondence to Yu-Qin Zhang or Sheng Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 485 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JQ., Chen, SM., Zhang, CM. et al. Abundant and diverse endophytic bacteria associated with medicinal plant Arctium lappa L. and their potential for host plant growth promoting. Antonie van Leeuwenhoek 115, 1405–1420 (2022). https://doi.org/10.1007/s10482-022-01785-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-022-01785-x

Keywords

Navigation