Skip to main content
Log in

Epiphytic and Endophytic Bacteria on Olive Tree Phyllosphere: Exploring Tissue and Cultivar Effect

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Variation on bacterial communities living in the phyllosphere as epiphytes and endophytes has been attributed to plant host effects. However, there is contradictory or inconclusive evidence regarding the effect of plant genetics (below the species’ level) and of plant tissue type on phyllosphere bacterial community assembly, in particular when epiphytes and endophytes are considered simultaneously. Here, both surface and internal bacterial communities of two olive (Olea europaea) cultivars were evaluated in twigs and leaves by molecular identification of cultivable isolates, with an attempt to answer these questions. Overall, Proteobacteria, Actinobacteria and Firmicutes were the dominant phyla, being epiphytes more diverse and abundant than endophytes. Host genotype (at cultivar level) had a structuring effect on the composition of bacterial communities and, in a similar way, for both epiphytes and endophytes. Plant organ (leaf vs. twig) control of the bacterial communities was less evident when compared with plant genotype and with a greater influence on epiphytic than on endophytic community structure. Each olive genotype/plant organ was apparently selective towards specific bacterial operational taxonomic units (OTUs), which may lead to specific feedbacks on fitness of plant genotypes. Bacterial recruitment was observed to happen mainly within epiphytes than in endophytes and in leaves as compared with twigs. Such host specificity suggested that the benefits derived from the plant–bacteria interaction should be considered at genetic levels below the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bringel F, Couée I (2015) Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol 6:486. https://doi.org/10.3389/fmicb.2015.00486

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leach JE, Triplett LR, Argueso CT, Trivedi P (2017) Communication in the phytobiome. Cell 169:587–596. https://doi.org/10.1016/j.cell.2017.04.025

    Article  CAS  PubMed  Google Scholar 

  4. Newton AC, Gravouil C, Fountaine JM (2010) Managing the ecology of foliar pathogens: ecological tolerance in crops. Ann Appl Biol 157:343–359. https://doi.org/10.1111/j.1744-7348.2010.00437.x

    Article  Google Scholar 

  5. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. https://doi.org/10.1146/annurev-arplant-050312-120106

    Article  CAS  PubMed  Google Scholar 

  6. O’Brien PA (2017) Biological control of plant diseases. Australas Plant Path 46:293–304. https://doi.org/10.1007/s13313-017-0481-4

    Article  Google Scholar 

  7. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840. https://doi.org/10.1038/nrmicro2910

    Article  CAS  PubMed  Google Scholar 

  8. Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8:e56329. https://doi.org/10.1371/journal.pone.0056329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carper DL, Carrell AA, Kueppers LM, Frank AC (2018) Bacterial endophyte communities in Pinus flexilis are structured by host age, tissue type, and environmental factors. Plant Soil 428:335–352. https://doi.org/10.1007/s11104-018-3682-x

    Article  CAS  Google Scholar 

  10. Kim M, Singh D, Lai-Hoe A, Go R, Abdul Rahim R, Ainuddin AN, Chun J, Adams JM (2012) Distinctive phyllosphere bacterial communities in tropical trees. Microb Ecol 63:674–681. https://doi.org/10.1007/s00248-011-9953-1

    Article  PubMed  Google Scholar 

  11. Lambais MR, Lucheta AR, Crowley DE (2014) Bacterial community assemblages associated with the phyllosphere, dermosphere, and rhizosphere of tree species of the Atlantic forest are host taxon dependent. Microb Ecol 68:567–574. https://doi.org/10.1007/s00248-014-0433-2

    Article  PubMed  Google Scholar 

  12. Laforest-Lapointe I, Messier C, Kembel SW (2016) Tree phyllosphere bacterial communities: exploring the magnitude of intra- and inter-individual variation among host species. PeerJ 4:e2367. https://doi.org/10.7717/peerj.2367

    Article  PubMed  PubMed Central  Google Scholar 

  13. Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2889. https://doi.org/10.1111/j.1462-2920.2010.02258.x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD (2010) Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Appl Environ Microbiol 76:8117–8125. https://doi.org/10.1128/AEM.01321-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JHJ (2012) Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J 6:1812–1822. https://doi.org/10.1038/ismej.2012.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khare E, Mishra J, Arora NK (2018) Multifaceted interactions between endophytes and plant: developments and prospects. Front Microbiol 9:2732. https://doi.org/10.3389/fmicb.2018.02732

    Article  PubMed  PubMed Central  Google Scholar 

  17. Loumou A, Giourga C (2003) Olive groves: the life and identity of the Mediterranean. Agric Hum Values 20:87–95. https://doi.org/10.1023/A:1022444005336

    Article  Google Scholar 

  18. Barranco D, Fernández-Escobar R, Rallo L (2008) El Cultivo del olivo. Junta de Andalucía y Ediciones8th edn. Mundi-Prensa, Madrid

    Google Scholar 

  19. Belda M, Holtanová E, Halenka T, Kalvová J (2014) Climate classification revisited: from Köppen to Trewartha. Clim Res 59:1–13. https://doi.org/10.3354/cr01204

    Article  Google Scholar 

  20. Lopez-Llorca LV, Macia-Vicente JG (2009) Plant symbioses with fungal endophytes: perspectives on conservation and sustainable exploitation of Mediterranean ecosystems. Mediterranea 20:10–47. https://doi.org/10.14198/MDTRRA2009.20.03

    Article  Google Scholar 

  21. Gualdi S et al (2013) Future climate projections. In: Navarra A, Tubiana L (eds) Regional assessment of climate change in the Mediterranean, Advances in Global Change Research 50. Springer, pp 53–118. https://doi.org/10.1007/978-94-007-5781-3_3

  22. Fisher PJ, Petrini O, Petrini LE, Descals E (1992) A preliminary study of fungi inhabiting xylem and whole stems of Olea europaea. Sydowia 44:117–121

    Google Scholar 

  23. Sia EF, Marcon J, Luvizotto DM, Quecine MC, Tsui S, Pereira JO, Pizzirani-Kleiner AA, Azevedo JL (2013) Endophytic fungi from the Amazonian plant Paullinia cupana and from Olea europaea isolated using cassava as an alternative starch media source. SpringerPlus 2:579. https://doi.org/10.1186/2193-1801-2-579

    Article  CAS  PubMed Central  Google Scholar 

  24. Torres M, Dolcet MM, Sala N, Canela R (2013) Endophytic fungi associated with Mediterranean plants as a source of mycelium-bound lipases. J Agric Food Chem 51:3328–3333. https://doi.org/10.1021/jf025786u

    Article  CAS  Google Scholar 

  25. Martins F, Pereira JA, Bota P, Bento A, Baptista P (2016) Fungal endophyte communities in above- and belowground olive tree organs and the effect of season and geographic location on their structures. Fungal Ecol 20:193–201. https://doi.org/10.1016/j.funeco.2016.01.005

    Article  Google Scholar 

  26. Gomes T, Pereira JA, Benhadi J, Lino-Neto T, Baptista P (2018) Endophytic and epiphytic phyllosphere fungal communities are shaped by different environmental factors in a Mediterranean ecosystem. Microb Ecol 76:668–679. https://doi.org/10.1007/s00248-018-1161-9

    Article  PubMed  Google Scholar 

  27. Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg F (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6(138). https://doi.org/10.3389/fmicb.2015.00138

  28. Malavolta C, Perdikis D (2012) Guidelines for integrated production of olives. IOBC technical guideline III, 2nd edition, 19pp

  29. Cai L, Ye L, Tong AHY, Lok S, Zhang T (2013) Biased diversity metrics revealed by bacterial 16S pyrotags derived from different primer sets. PLoS One 8:e53649. https://doi.org/10.1371/journal.pone.0053649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645. https://doi.org/10.1038/nrmicro3330

    Article  CAS  PubMed  Google Scholar 

  31. Seaby RM, Henderson PA (2006) Species diversity and richness version 4. Pisces Conservation Ltd., Lymington

    Google Scholar 

  32. Magurran AE (2013) Measuring biological diversity. Wiley-Blackwell, 264 pp,

  33. Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  34. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial (plymouth routines in multivariate ecological research). PRIMER-E, Plymouth

    Google Scholar 

  35. Henderson PA, Seaby RMH (2007) Community analysis package 4.0 Pisces. Conservation ltd, Lymington

    Google Scholar 

  36. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/

  37. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366. https://doi.org/10.2307/2963459

    Article  Google Scholar 

  38. Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species environment relationships. Freshw Biol 31:277–294. https://doi.org/10.1111/j.1365-2427.1994.tb01741.x

    Article  Google Scholar 

  39. Dray S, Dufour A (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20. https://doi.org/10.18637/jss.v022.i04

    Article  Google Scholar 

  40. Josse J, Pagès J, Husson F (2008) Testing the significance of the RV coefficient. Comput Stat Data An 53:82–91. https://doi.org/10.1016/j.csda.2008.06.012

    Article  Google Scholar 

  41. Connor DJ (2005) Adaptation of olive (Olea europaea L.) to water-limited environments. Aust J Agric Res 56:1181–1189. https://doi.org/10.1071/AR05169

    Article  Google Scholar 

  42. Hug LA (2018) Sizing up the uncultured microbial majority. mSystems 3:e00185–e00118

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Valverde A, González-Tirante M, Medina-Sierra M, Rivas R, Santa-Regina I, Igual JM (2017) Culturable bacterial diversity from the chestnut (Castanea sativa mill.) phyllosphere and antagonism against the fungi causing the chestnut blight and ink diseases. AIMS Microbiol 3:293–314. https://doi.org/10.3934/microbiol.2017.2.293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vokou D, Vareli K, Zarali E, Karamanoli K, Constantinidou HA, Monokrousos N, Halley JM, Sainis I (2012) Exploring biodiversity in the bacterial community of the Mediterranean phyllosphere and its relationship with airborne bacteria. Microb Ecol 64:714–724. https://doi.org/10.1007/s00248-012-0053-7

  45. Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond JB, Cowan DA (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 39:203–221. https://doi.org/10.1093/femsre/fuu011

    Article  CAS  PubMed  Google Scholar 

  46. Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, North G, Visel A, Partida-Martinez LP, Tringe SG (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209:798–811. https://doi.org/10.1111/nph.13697

    Article  CAS  PubMed  Google Scholar 

  47. Sun Y, Shi YL, Wang H, Zhang T, Yu LY, Sun H, Zhang YQ (2018) Diversity of bacteria and the characteristics of actinobacteria community structure in Badain Jaran desert and Tengger desert of China. Front Microbiol 9:1068. https://doi.org/10.3389/fmicb.2018.01068

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vikram S, Guerrero LD, Makhalanyane TP, Le PT, Seely M, Cowan DA (2016) Metagenomic analysis provides insights into functional capacity in a hyperarid desert soil niche community. Environ Microbiol 18:1875–1888

    Article  CAS  PubMed  Google Scholar 

  49. Stankovic N, Radulovic V, Petkovic M, Vuckovic I, Jadranin M, Vasiljevic B, Nikodinovic-Runic J (2012) Streptomyces sp. JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties. Appl Microbiol Biotechnol 96:1217–1231. https://doi.org/10.1007/s00253-012-4237-3

    Article  CAS  PubMed  Google Scholar 

  50. Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ (2001) Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65:44–79. https://doi.org/10.1128/MMBR.65.1.44-79.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Swick MC, Koehler TM, Driks A (2016) Surviving between hosts: sporulation and transmission. Microbiol Spectr 4(4):VMBF0029-2015. https://doi.org/10.1128/microbiolspec.VMBF-0029-2015

    Article  Google Scholar 

  52. Hussain SS, Mehnaz S, Siddique KHM (2018) Harnessing the plant microbiome for improved abiotic stress tolerance. In: Egamberdieva D, Ahmad P (eds) Plant microbiome: stress response. Springer Nature Singapore Pte Ltd., pp 21–43. https://doi.org/10.1007/978-981-10-5514-0_2

  53. Peñuelas J, Rico L, Ogaya R, Jump S, Terradas J (2012) Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biol 14:565–575. https://doi.org/10.1111/j.1438-8677.2011.00532.x

    Article  PubMed  Google Scholar 

  54. Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352. https://doi.org/10.1371/journal.pbio.1002352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151. https://doi.org/10.1038/ncomms12151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cramer W, Guiot J, Fader M, Garrabou J, Gattuso J-P, Iglesias A, Lange MA, Lionello P, Llasat MC, Paz S, Peñuelas J, Snoussi M, Toreti A, Tsimplis MN, Xoplaki E (2018) Climate change and interconnected risks to sustainable development in the Mediterranean. Nat Clim Chang 8:972–980. https://doi.org/10.1038/s41558-018-0299-2

    Article  Google Scholar 

  57. Meirinhos J, Silva BM, Valentão P, Seabra RM, Pereira JA, Dias A, Andrade PB, Ferreres F (2005) Analysis and quantification of flavonoidic compounds from Portuguese olive (Olea europaea L.) leaf cultivars. Nat Prod Res 19:189–195. https://doi.org/10.1080/14786410410001704886

    Article  CAS  PubMed  Google Scholar 

  58. Malheiro R, Casal S, Baptista P, Pereira JA (2015) Physico-chemical characteristics of olive leaves and fruits and their relation with Bactrocera oleae (Rossi) cultivar oviposition preference. Sci Hortic 194:208–214. https://doi.org/10.1016/j.scienta.2015.08.017

    Article  CAS  Google Scholar 

  59. Malheiro R, Casal S, Cunha SC, Baptista P, Pereira JA (2016) Identification of leaf volatiles from olive (Olea europaea) and their possible role in the ovipositional preferences of olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). Phytochem 121:11–19. https://doi.org/10.1016/j.phytochem.2015.10.005

    Article  CAS  Google Scholar 

  60. Yadav RKP, Karamanoli K, Vokou D (2005) Bacterial colonization of the phyllosphere of Mediterranean perennial species as influenced by leaf structural and chemical features. Microb Ecol 50:185–196. https://doi.org/10.1007/s00248-004-0171-y

    Article  CAS  PubMed  Google Scholar 

  61. Ruppel S, Krumbein A, Schreiner M (2008) Composition of the phyllospheric microbial populations on vegetable plants with different glucosinolate and carotenoid compositions. Microb Ecol 56:364–372. https://doi.org/10.1007/s00248-007-9354-7

    Article  CAS  PubMed  Google Scholar 

  62. Lemanceau P, Barret M, Mazurier S, Mondy S, Pivato B, Fort T, Vacher C (2017) Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere. Adv Bot Res 82:101–133. https://doi.org/10.1016/bs.abr.2016.10.007

    Article  CAS  Google Scholar 

  63. Gomes T, Pereira JA, Lino-Neto T, Bennett AE, Baptista P (2019) Bacterial disease induced changes in fungal communities of olive tree twigs depend on host genotype. Sci Rep 9:5882. https://doi.org/10.1038/s41598-019-42391-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vega F, Pava-Ripoll M, Posada F, Buyer J (2005) Endophytic bacteria in Coffea arabica L. J Basic Microbiol 45:371–380. https://doi.org/10.1002/jobm.200410551

    Article  PubMed  Google Scholar 

  65. Adams PD, Kloepper JW (2002) Effect of host genotype on indigenous bacterial endophytes of cotton (Gossypium hirsutum L). Plant Soil 240:181–189. https://doi.org/10.1023/A:1015840224564

    Article  CAS  Google Scholar 

  66. Saunders M, Glenn AE, Kohn LM (2010) Exploring the evolutionary ecology of fungal endophytes in agricultural systems: using functional traits to reveal mechanisms

  67. Cregger MA, Veach AM, Yang ZK, Crouch MJ, Vilgalys R, Tuskan GA, Schadt CW (2018) The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6:31. https://doi.org/10.1186/s40168-018-0413-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fernández J (2014) Understanding olive adaptation to abiotic stresses as a tool to increase crop performance. Environ Exp Bot 103:158–179. https://doi.org/10.1016/j.envexpbot.2013.12.003

    Article  Google Scholar 

  69. Patel JS, Singh A, Singh HB, Sarma BK (2015) Plant genotype, microbial recruitment and nutritional security. Front Plant Sci 6:608. https://doi.org/10.3389/fpls.2015.00608

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tena G (2018) Recruiting microbial bodyguards. Nat Plants 4:857–857. https://doi.org/10.1038/s41477-018-0308-5

    Article  PubMed  Google Scholar 

  71. Ortega RA, Mahnert A, Berg C, Müller H, Berg G (2016) The plant is crucial: specific composition and function of the phyllosphere microbiome of indoor ornamentals. FEMS Microbiol Ecol 92(12):fiw173. https://doi.org/10.1093/femsec/fiw173

    Article  CAS  PubMed  Google Scholar 

  72. Subramanian P, Kim K, Krishnamoorthy R, Mageswari A, Selvakumar G, Sa T (2016) Cold stress tolerance in psychrotolerant soil bacteria and their conferred chilling resistance in tomato (Solanum lycopersicum mill.) under low temperatures. PLoS One 11(8):e0161592. https://doi.org/10.1371/journal.pone.0161592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Díez-Méndez A, Rivas R (2017) Improvement of saffron production using Curtobacterium herbarum as a bioinoculant under greenhouse conditions. AIMS Microbiol 3:354–364. https://doi.org/10.3934/microbiol.2017.3.354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Peix A, Rivas R, Santa-Regina I, Mateos PF, Martínez-Molina E, Rodríguez-Barrueco C, Velázquez E (2004) Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int J Syst Evol Microbiol 54:847–850. https://doi.org/10.1099/ijs.0.02966-0

    Article  CAS  PubMed  Google Scholar 

  75. Pusey PL (2002) Biological control agents for fire blight of apple compared under conditions limiting natural dispersal. Plant Dis 86:639–644. https://doi.org/10.1094/PDIS.2002.86.6.639

    Article  CAS  PubMed  Google Scholar 

  76. Walterson AM, Stavrinides J (2015) Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev 39:968–984. https://doi.org/10.1093/femsre/fuv027

    Article  CAS  PubMed  Google Scholar 

  77. Shafi J, Tian H, Ji M (2016) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31:446–459. https://doi.org/10.1080/13102818.2017.1286950

    Article  CAS  Google Scholar 

  78. Zengerer V, Schmid M, Bieri M, Müller DC, Remus-Emsermann MNP, Ahrens CH, Pelludat C (2018) Pseudomonas orientalis F9: a potent antagonist against phytopathogens with phytotoxic effect in the apple flower. Front Microbiol 9:145. https://doi.org/10.3389/fmicb.2018.00145

    Article  PubMed  PubMed Central  Google Scholar 

  79. Müller T, Behrendt U, Ruppel S, von der Waydbrink G, Müller ME (2016) Fluorescent pseudomonads in the phyllosphere of wheat: potential antagonists against fungal phytopathogens. Curr Microbiol 72:383–389. https://doi.org/10.1007/s00284-015-0966-8

    Article  CAS  PubMed  Google Scholar 

  80. Mohamed R, Groulx E, Defilippi S, Erak T, Tambong JT, Tweddell RJ, Tsopmo A, Avis TJ (2017) Physiological and molecular characterization of compost bacteria antagonistic to soil-borne plant pathogens. Can J Microbiol 63:411–426. https://doi.org/10.1139/cjm-2016-0599

    Article  CAS  PubMed  Google Scholar 

  81. Torres MJ, Brandan CP, Petroselli G, Erra-Balsells R, Audisio MC (2016) Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Microbiol Res 182:31–39. https://doi.org/10.1016/j.micres.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  82. Sharifazizi M, Harighi B, Sadeghi A (2017) Evaluation of biological control of Erwinia amylovora, causal agent of fire blight disease of pear by antagonistic bacteria. Biol Control 104:28–34. https://doi.org/10.1016/j.biocontrol.2016.10.007

    Article  Google Scholar 

  83. Mikiciński A, Sobiczewski P, Puławska J, Malusa E (2016) Antagonistic potential of Pseudomonas graminis 49M against Erwinia amylovora, the causal agent of fire blight. Arch Microbiol 198:531–539. https://doi.org/10.1007/s00203-016-1207-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Khan MA, Asaf S, Khan AL, Ullah I, Ali S, Kang S, Lee I (2019) Alleviation of salt stress response in soybean plants with the endophytic bacterial isolate Curtobacterium sp. SAK1. Ann Microbiol 1:12–808. https://doi.org/10.1007/s13213-019-01470-x

    Article  CAS  Google Scholar 

  85. Bose D, Chatterjee S (2016) Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa. Appl Nanosci 6:895–901. https://doi.org/10.1007/s13204-015-0496-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the FEDER and Foundation for Science and Technology (FCT, Portugal) under Programme PT2020 for financial support to CIMO (UID/AGR/00690/2019) and BioISI (UID/MULTI/04046/2013), as well as the Horizon 2020, the European Union’s Framework Programme for Research and Innovation, for financial support the project PRIMA/0002/2018 INTOMED—Innovative tools to combat crop pests in the Mediterranean. D. Mina thanks FCT, POPH-QREN and FSE for SFRH-BD-105341/2014 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Baptista.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mina, D., Pereira, J.A., Lino-Neto, T. et al. Epiphytic and Endophytic Bacteria on Olive Tree Phyllosphere: Exploring Tissue and Cultivar Effect. Microb Ecol 80, 145–157 (2020). https://doi.org/10.1007/s00248-020-01488-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01488-8

Keywords

Navigation