Skip to main content
Log in

Description of Lujinxingia vulgaris sp. nov., isolated from coastal sediment via prey-traps

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Two Gram-stain negative, facultative anaerobic, oxidase-negative, catalase-positive bacilli, designated as strains TMQ4T and TMQ2, were isolated from Xiaoshi Island, China, using prey-traps. Growth was observed within the ranges 25–45 °C (optimally at 37 °C), pH 6.5–9.0 (optimally at pH 7.5–8.0) and 1–8% NaCl (optimally at 3–4%, w/v). The draft genome sequences of strains TMQ4T and TMQ2 contained 184 contigs of 5,609,735 bp with a G+C content of 64.4% and 148 contigs of 5,589,985 bp with a G+C content of 65.0%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences showed that both strains belonged to the genus Lujinxingia with the similarity of 98.9%. The phylogenetic and phylogenomic topologies and analyses demonstrated that both strains clustered together and differentiated from the closest neighbour, Lujinxingia sediminis SEH01T. Genomic analyses showed that two strains lost the biosynthesis pathway of several chemical compounds. Iso-C15:0 was contained in the predominant cellular fatty acids in both strains. The major polar lipids of both strains consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and unidentified lipids; and the respiratory quinone was menaquinone MK-7 for both strains. Both strains predated other bacteria, including Owenweeksia hongkongensis JCM 12287T and Paraliobacillus ryukyuensis DSM 15140T, and were lured with one prey Acinetobacter baumannii ATCC 19606T in prey-trap. Combining genomic analyses, two strains had the predatory indices of 2, similar to representative typical bacterial predators. The physiological, biochemical, and phylogenetic properties suggest that the two strains represent a novel species within the genus Lujinxingia. The name Lujinxingia vulgaris sp. nov. is proposed, with strain TMQ4T (= KCTC 62851T = MCCC 1H00392T) as type strain and strain TMQ2 (= KCTC 72,079 = MCCC 1H00381) as reference strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GTDB:

Genome Taxonomy Database

HPLC:

High Performance Liquid Chromatography

MA:

Marine agar 2216

MB:

Marine broth 2216

MCCC:

Marine Culture Collection of China

MEGA:

Molecular Evolutionary Genetics Analysis

MIDI:

Microbial Identification System

NCBI:

National Centre of Biotechnology Information

RAST:

Rapid Annotation using Subsystem Technology

TLC:

Thin layer chromatography

UBCG:

Up-to-date Bacterial Core Gene Set

References

  • Arend KI, Schmidt JJ, Bentler T et al (2020) Myxococcus xanthus predation of Gram-positive or Gram-negative bacteria is mediated by different bacteriolytic mechanisms. Appl Environ Microbiol 87:e02382-e2320

    Google Scholar 

  • Bachran M, Kluge S, Lopez-Fernandez M, Cherkouk A (2019) Microbial diversity in an arid, naturally saline environment. Microb Ecol 78:494–505

    Article  CAS  Google Scholar 

  • Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070

    CAS  PubMed  Google Scholar 

  • Buyer JS (2002) Rapid sample processing and fast gas chromatography for identification of bacteria by fatty acid analysis. J Microbiol Methods 51:209–215

    Article  CAS  Google Scholar 

  • Castejón OJ (2003) Sample preparation methods for scanning electron microscopy. In: Scanning electron microscopy of cerebellar cortex. Springer, Boston, pp 1–24

  • Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH (2019) GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36:1925–1927

    Google Scholar 

  • Cheng C, Wei H, Xu C, Xie X, Jiang S et al (2018) Maternal soluble fiber diet during pregnancy changes the intestinal microbiota, improves growth performance, and reduces intestinal permeability in piglets. Appl Environ Microbiol 84:e01047-e1118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo LY, Li CM, Wang S, Mu DS, Du ZJ (2019) Lujinxingia litoralis gen. nov., sp. Nov. and Lujinxingia sediminis sp. Nov., two new representatives in the order Bradymonadales. Int J Syst Evol Microbiol 69:2767–2774

    Article  CAS  Google Scholar 

  • Hahn M, Schmidt J, Koll U, Rohde M, Verbarg S et al (2017) Silvanigrella aquatica gen. nov., sp. nov., isolated from a freshwater lake, description of Silvanigrellaceae fam. nov. and Silvanigrellales ord. nov., reclassification of the order Bdellovibrionales in the class Oligoflexia, reclassification of the families Bacteriovoracaceae and Halobacteriovoraceae in the new order Bacteriovoracales ord. nov., and reclassification of the family Pseudobacteriovoracaceae in the order Oligoflexales. Int J Syst Evol Microbiol 67:2555–2568

    Article  CAS  Google Scholar 

  • Ishikawa M, Ishizaki S, Yamamoto Y, Yamasato K (2002) Paraliobacillus ryukyuensis gen. nov., sp. nov., a new Gram-positive, slightly halophilic, extremely halotolerant, facultative anaerobe isolated from a decomposing marine alga. J Gen Appl Microbiol 48:269–279

    Article  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol 62:716–721

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Klappenbach JA, Goris J, Vandamme P, Coenye T, Konstantinidis KT et al (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol 57:81–91

    Article  Google Scholar 

  • Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Lau KWK, Ng CYM, Ren J, Lau SCL, Qian PY et al (2005) Owenweeksia hongkongensis gen. nov., sp. nov., a novel marine bacterium of the phylum ‘Bacteroidetes’. Int J Syst Evol 55:1051–1057

    Article  CAS  Google Scholar 

  • Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol 66:1100–1103

    Article  CAS  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X (2010) Denovo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  CAS  Google Scholar 

  • Liu QQ, Wang Y, Li J, Du ZJ, Chen GJ (2014) Saccharicrinis carchari sp. Nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 64:2204–2209

    Article  CAS  Google Scholar 

  • Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P et al (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346

    Article  CAS  Google Scholar 

  • Mu DS, Wang S, Liang QY, Du ZZ, Tian R et al (2020) Bradymonabacteria, a novel bacterial predator group with versatile survival strategies in saline environments. Microbiome 8:126

    Article  Google Scholar 

  • Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al (2018) UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285

    Article  CAS  Google Scholar 

  • Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  Google Scholar 

  • Pasternak Z, Pietrokovski S, Rotem O, Gophna U, Lurie-Weinberger MN et al (2013) By their genes ye shall know them: genomic signatures of predatory bacteria. ISME J 7:756–769

    Article  CAS  Google Scholar 

  • Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, Muñoz-Dorado J (2016) Bacterial predation: 75 years and counting!: bacterial predation. Environ Microbiol 18:766–779

    Article  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. PNAS 106:19126–19131

    Article  CAS  Google Scholar 

  • Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931

    Article  CAS  Google Scholar 

  • Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123

    Article  CAS  Google Scholar 

  • Tindall B (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130

    Article  CAS  Google Scholar 

  • Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    Article  CAS  Google Scholar 

  • Wang S, Mu DS, Du ZJ (2020) Persicimonas caeni gen nov., sp. Nov., the representative of a novel wide-ranging predatory taxon in Bradymonadales. Front Microbiol 11:13

    Article  Google Scholar 

  • Wang S, Mu DS, Zheng WS, Du ZJ (2019) Complete genome sequence of Bradymonas sediminis FA350T, the first representative of the order Bradymonadales. Mar Genomics 46:62–65

    Article  Google Scholar 

  • Wang ZJ, Liu QQ, Zhao LH, Du ZJ, Chen GJ (2015) Bradymonas sediminis gen. nov., sp. nov., isolated from coastal sediment, and description of Bradymonadaceae fam. nov. and Bradymonadales ord. nov. Int J Syst Evol Microbiol 65:1542–1549

    Article  CAS  Google Scholar 

  • Weinberg ED, Cowan ST, Steel KJ (1965) Manual for the identification of medical bacteria. Science 149:852

    Article  Google Scholar 

  • Xu XW, Wu YH, Wang CS, Oren A, Zhou PJ et al (2007) Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57:717–720

    Article  CAS  Google Scholar 

  • Yoon SH, Ha S, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286

    Article  CAS  Google Scholar 

  • Zhang H, Han JR, Shi MJ, Du ZJ, Chen GJ et al (2017) Brumimicrobium aurantiacum sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 67:3256–3260

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work of scanning electron microscope was supported by the Physical-Chemical Materials Analytical & Testing Centre of Shandong University at Weihai. We appreciate Prof. Aharon Oren for his generous help in Latin Nomenclature.

Funding

This work was supported by the National Natural Science Foundation of China (32070002, 31770002) and National Science and Technology Fundamental Resources Investigation Program of China (2019FY100700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zong-Jun Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical statement

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank accession numbers for the 16S rRNA gene sequence of Lujinxingia vulgaris TMQ4Tand TMQ2 are MH613067 and MN547342, respectively. The draft genome of Lujinxingia vulgaris TMQ4T and TMQ2 has been deposited in GenBank under the Accession Numbers VOSM00000000 and VOSL00000000, separately.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Mu, DS., Li, GY. et al. Description of Lujinxingia vulgaris sp. nov., isolated from coastal sediment via prey-traps. Antonie van Leeuwenhoek 114, 1805–1818 (2021). https://doi.org/10.1007/s10482-021-01640-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-021-01640-5

Keywords

Navigation