Skip to main content
Log in

Sympatric metabolic diversification of experimentally evolved Escherichia coli in a complex environment

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Sympatric diversification in bacteria has been found to contravene initial evolutionary theories affirming the selection of the fittest type by competition for the same resource. Studies in unstructured (well-mixed) environments have discovered divergence of an ancestor strain into genomically and phenotypically divergent types growing both on single and mixed energy sources. This study addresses the metabolic diversification in an Escherichia coli population that evolved over ~1,000 generations under aerobic conditions in the nutritional complexity offered by Luria–Bertani (LB) broth. The medium lacked glucose but contained a variety of other resources. Two distinct metabolically-diverged types, coinciding with colony morphologies, were found to dominate the populations. One type was an avid carbohydrate consumer, which could quickly utilize the available (alternative) substrates feeding into glycolysis. The second type was a slow grower, which was able to specifically consume acetate. The capacity to utilize acetate might be providing an advantage to this second type, suggesting an increased capability to deal with adverse conditions that occur in the later stages of growth. The diverged metabolic preferences of the two forms suggested differential and interactive ecological roles within the population. We postulate that these types used different alternative metabolic strategies occupying different niches in a sympatric manner as an outcome of adaptation to the complex environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams J, Puskas-Rozsa S, Simlar J, Wilke CM (1992) Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae. Curr Genet 22:13–19

    Article  CAS  PubMed  Google Scholar 

  • Baev MV, Baev D, Janeso A, Campbell JW (2006) Growth of Escherichia coli MG1655 on LB medium: monitoring utilization of sugars, alcohols and organic acids with transcriptional microarrays. Appl Microbiol Biotechnol 71:310–316

    Article  CAS  PubMed  Google Scholar 

  • Chan TT, Newman EB (1981) Threonine as a carbon source for Escherichia coli. J Bacteriol 145(3):1150–1153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LM, Maloy S (1991) Regulation of proline utilization in enteric bacteria: cloning and characterization of the Klebsiella put control region. J Bacteriol 173(2):783–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Claassen PAM, Kortstee GJJ, Oosterveld-van Vliet WM, van Neerven ARW (1986) Colonial heterogeneity of Thiobacillus versutus. J Bacteriol 168:791–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke K, Gorley R (2006) PRIMER v6. User manual/tutorial PRIMER-E, Plymouth

    Google Scholar 

  • Dettman JR, Rodrigue N, Melnyk H, Wong A, Bailey SF, Kassen R (2012) Evolutionary insight from whole-genome sequencing of experimentally evolved microbes. Mol Ecol 21:2058–2077

    Article  CAS  PubMed  Google Scholar 

  • Dittrich CR, Vadali RV, Bennett GN, San K (2005) Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnol Prog 21:627–631

    Article  CAS  PubMed  Google Scholar 

  • Dover S, Halpern YS (1972) Utilization of aminobutyric acid as the sole carbon and nitrogen source by Escherichia coli k-12 mutants. J Bacteriol 109(2):835–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friesen ML, Saxer G, Travisano M, Doebeli M (2004) Experimental evidence for sympatric ecological diversification due to frequency dependent competition in Escherichia coli. Evolution 58(2):245–260

    Article  PubMed  Google Scholar 

  • Hall AR, Colegrave N (2007) How does resource supply affect evolutionary diversification? Proc R Soc B 274:73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halpern YS, Umbarger HE (1961) Utilization of L-glutarnic and 2-oxoglutaric acid as sole sources of carbon by Escherichia coli. J Gen Microbiol 26:175–183

    Article  CAS  PubMed  Google Scholar 

  • Han, L (2002) Physiology of Escherichia coli in Batch and Fed-batch Cultures with Special Emphasis on Amino Acid and Glucose Metabolism Bioteknologi, Stockholm ISBN 91-7283-276-2

  • Han K, Lim HC, Hong J (1992) Acetic acid formation in Escherichia coli fermentation. Biotechnol Bioeng 39:663–671

    Article  CAS  PubMed  Google Scholar 

  • Hanko VP, Rohrer J (2000) Determination of carbohydrates, sugar alcohols, and glycols in cell cultures and fermentation broths using high-performance anion-exchange chromatography with pulsed amperometric detection. Anal Biochem 283(2):192–199

    Article  CAS  PubMed  Google Scholar 

  • Hanko VP, Rohrer J (2004) Determination of amino acids in cell culture and fermentation broth media using anion-exchange chromatography with integrated pulsed amperometric detection. Anal Biochem 324:29–38

    Article  CAS  PubMed  Google Scholar 

  • Hardin G (1960) The competitive exclusion principle. Science 131(3409):1292–1297

    Article  CAS  PubMed  Google Scholar 

  • Helling RB, Vargas CN, Adams J (1987) Evolution of Escherichia coli during growth in a constant environment. Genetics 116:349–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herron MD, Doebeli M (2013) Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. Plos Biol 11(2):e1001490. doi:10.1371/journalpbio1001490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez DJ, Korenblum E, van Elsas JD (2013) Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5253-7

    PubMed  Google Scholar 

  • Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of diversity. Science 15:173–190

    Google Scholar 

  • Kassen R, Rainey PB (2004) The ecology and genetics of microbial diversity. Annu Rev Microbiol 58:207–231

    Article  CAS  PubMed  Google Scholar 

  • Kinnersley MA, Holben WE, Rosenzweig F (2009) E Unibus Plurum: genomic analysis of an experimentally evolved polymorphism in Escherichia coli. Plos Genet 5(11):e1000713. doi:10.1371/journalpgen1000713

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleman GL, Strohl WR (1994) Acetate metabolism by Escherichia coli in high-cell-density fermentation. Appl Environ Microbiol 60(11):3952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korona R (1996) Adaptation to structurally different environments. P Roy Soc Lond B Bio 263(1377):1665–1669

    Article  Google Scholar 

  • Kotrba P, Inui M, Yukawa H (2001) Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J Biosci Bioeng 92(6):502–517

    Article  CAS  PubMed  Google Scholar 

  • Kurlandzka A, Rosenzweig RF, Adams J (1991) Identification of adaptive changes in an evolving population of Escherichia coli: the role of changes with regulatory and highly pleiotropic effects. Mol Biol Evol 8:261–281

    CAS  PubMed  Google Scholar 

  • Le Gac M, Brazas MD, Bertrand M, Tyerman JG, Spencer CC, Hancock RE, Doebeli M (2008) Metabolic changes associated with adaptive diversification in Escherichia coli. Genetics 178:1049–1060

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin H, Castro N, Bennett G, San KY (2006) Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering Appl Microbiol. Biotech 71(6):870–874

    CAS  Google Scholar 

  • MacLean RC, Dickson A, Bell G (2005) Resource competition and adaptive radiation in a microbial microcosm. Ecol Lett 8:38–46

    Article  Google Scholar 

  • Maharjan RP, Seeto S, Ferenci T (2007) Divergence and redundancy of transport and metabolic rate-yield strategies in a single Escherichia coli population. J Bacteriol 189:2350–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcus M, Halpern YS (1969) Genetic analysis of the glutamate permease in Escherichia coli K-12. J Bacteriol 97:1118–1128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Gómez K, Flores N, Castañeda HM, Martínez-Batallar G, Hernández-Chávez G, Ramírez OT, Gosset G, Encarnación S, Bolivar F (2012) New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microb Cell Fact 11:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Notley L, Ferenci T (1996) Induction of RpoS-dependent functions in glucose-limited continuous culture: what level of nutrient limitation induces the stationary phase of Escherichia coli? J Bacteriol 178:1465–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ponciano JM, La HJ, Joyce P, Forney LJ (2009) Evolution of diversity in spatially structured Escherichia coli populations. Appl Environ Microb 75(19):6047–6054

    Article  CAS  Google Scholar 

  • Puentes-Téllez PE, Hansen MA, Sørensen SJ, van Elsas JD (2013) Adaptation and heterogeneity of Escherichia coli MC1000 growing in complex environments. Appl Environ Microbiol 79:1008–1017

    Article  PubMed  PubMed Central  Google Scholar 

  • Puentes-Téllez PE, Kovacs AT, Kuipers OP, van Elsas JD (2014) Comparative genomics and transcriptomics analysis of experimentally evolved Escherichia coli MC1000 in complex environments. Environ Microbiol 16(3):856–870

    Article  PubMed  Google Scholar 

  • Rainey P, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature 394:69–72

    Article  CAS  PubMed  Google Scholar 

  • Reboud X, Bell G (1997) Experimental evolution in Chlamydomonas III Evolution of specialist and generalist types in environments that vary in space and time. Heredity 78:507–514

    Article  Google Scholar 

  • Rosenzweig RF, Sharp RR, Treves DS, Adams J (1994) Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics 137:903–917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in Luria Bertani broth. J Bacteriol 189(23):8746–8749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyerman J, Havard N, Saxer G, Travisano M, Doebeli M (2005) Unparallel diversification in bacterial microcosms. Proc Biol Sci 272(1570):1393–1398

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasi F, Travisano M, Lenski RE (1994) Long term experimental evolution in Escherichia coli II changes in life-history traits during adaptation to a seasonal environment. Am Nat 144(3):422–456

    Article  Google Scholar 

  • Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the partners of the Popcorn consortium for their wise comments and expertise. We also thank NWO and the ERA IB- for financing this research.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Eliana Puentes-Téllez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puentes-Téllez, P.E., van Elsas, J.D. Sympatric metabolic diversification of experimentally evolved Escherichia coli in a complex environment. Antonie van Leeuwenhoek 106, 565–576 (2014). https://doi.org/10.1007/s10482-014-0228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0228-y

Keywords

Navigation