Skip to main content
Log in

Physiology and gene expression profiles of Dekkera bruxellensis in response to carbon and nitrogen availability

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The assimilation of nitrate, a nitrogenous compound, was previously described as an important factor favoring Dekkera bruxellensis in the competition with Saccharomyces cerevisiae for the industrial sugarcane substrate. In this substrate, nitrogen sources are limited and diverse, and a recent report showed that amino acids enable D. bruxellensis to grow anaerobically. Thus, understanding the regulation of nitrogen metabolism is one fundamental aspect to comprehend the competiveness of D. bruxellensis in the fermentation environment. In the present study, we evaluated the physiological and transcriptional profiles of D. bruxellensis in response to different carbon and nitrogen supplies to determine their influence on growth, sugar consumption, and ethanol production. Besides, the expression of genes coding for nitrogen permeases and enzymes involved in the biosynthesis of glutamate and energetic metabolism were investigated under these conditions. Our data revealed that genes related to nitrogen uptake in D. bruxellensis are under the control of nitrogen catabolite repression. Moreover, we provide indications that glutamate dehydrogenase and glutamate synthase may switch roles as the major pathway for glutamate biosynthesis in D. bruxellensis. Finally, our data showed that in nonoptimal growth conditions, D. bruxellensis leans toward the respiratory metabolism. The results presented herein show that D. bruxellensis and S. cerevisiae share similar regulation of GDH–GOGAT pathway, while D. bruxellensis converts less glucose to ethanol than S. cerevisiae do when nitrogen is limited. The consequence of this particularity to the industrial process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barel I, MacDonald DW (1993) Enzyme defects in glutamate requiring strains of Schizosaccharomyces pombe. FEMS Microbiol Lett 113:267–272

    Article  PubMed  CAS  Google Scholar 

  • Basílio ACM, de Araújo PRL, de Morais JOF, da Silva Filho EA, de Morais MA, Simões DA (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56:322–326

    Article  PubMed  Google Scholar 

  • Blomqvist J, Eberhard T, Schnürer J, Passoth V (2010) Fermentation characteristics of Dekkera bruxellensis strains. Appl Microbiol Biotechnol 87:1487–1497

    Article  PubMed  CAS  Google Scholar 

  • Blomqvist J, Nogué VS, Gorwa-Grauslund M, Passoth V (2012) Physiological requirements for growth and competitiveness of Dekkera bruxellensis under oxygen-limited or anaerobic conditions. Yeast 29:265–274

    Article  PubMed  CAS  Google Scholar 

  • Boer VM, Tai SL, Vuralhan Z, Arifin Y, Walsh MC, Piper MDW, de Winde JH, Pronk JT, Daran JM (2007) Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Res 7:604–620

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  • Cain NE, Kaiser CA (2011) Transport activity-dependent intracellular sorting of the yeast general amino acid permease. Mol Biol Cell 22:1919–1929

    Article  PubMed  CAS  Google Scholar 

  • Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207

    Article  PubMed  CAS  Google Scholar 

  • Chatonnet P, Dubourdieu D, Boidron JN (1995) The influence of Brettanomyces/Dekkera sp. yeast and lactic acid bacteria on the ethyl phenol content of red wines. Am J Enol Vitic 46:463–468

    CAS  Google Scholar 

  • Chatonnet P, Viala C, Dubourdieu D (1997) Influence of polyphenolic components of red wines on the microbial synthesis of volatile phenols. Am J Enol Vitic 48:443–448

    CAS  Google Scholar 

  • Coffman JA, Rai R, Cunningham T, Svetlov V, Cooper TG (1996) Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae. Mol Cell Biol 16:847–858

    PubMed  CAS  Google Scholar 

  • Conterno L, Joseph CML, Arvik TJ, Henick-kling T, Bisson LF (2006) Genetic and physiological characterization of Brettanomyces bruxellensis strains isolated from wines. Am J Enol Vitic 57:139–147

    CAS  Google Scholar 

  • Cooper TG (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26:223–238

    Article  PubMed  CAS  Google Scholar 

  • de Barros Pita W, Leite FCB, de Souza Liberal AT, Simões DA, de Morais MA Jr (2011) The ability to use nitrate confers advantage to Dekkera bruxellensis over S. cerevisiae and can explain its adaptation to industrial fermentation processes. Antonie Van Leeuwenhoek 100:99–107

    Article  PubMed  Google Scholar 

  • de Barros Pita W, Leite FCB, de Souza Liberal AT, Pereira LF, Carazzolle MF, Pereira GA, De Morais MA Jr (2012) A new set of reference genes for RT-qPCR assays in the yeast Dekkera bruxellensis. Can J Microbiol 58:1362–1367

    Article  PubMed  Google Scholar 

  • de Barros Pita W, Tiukova I, Leite FCB, Passoth V, Simões DA, de Morais MA Jr (2013) The influence of nitrate on the physiology of the yeast Dekkera bruxellensis grown under oxygen limitation. Yeast 30:111–117

    Article  PubMed  Google Scholar 

  • de Morais MA Jr (2003) The NADP+-dependent glutamate dehydrogenase of the yeast Kluyveromuces marxianus responds to nitrogen repression similarly to Saccharomyces cerevisaie. Braz J Microbiol 34:334–338

    Article  Google Scholar 

  • de Souza Liberal AT, Basílio ACM, do Monte Resende A, Brasileiro BTV, da Silva-Filho EA, de Morais JOF, Simões DA, de Morais MA Jr (2007) Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J Appl Microbiol 102:538–547

    Article  PubMed  Google Scholar 

  • DeLuna A, Avendaño A, Riego L, Gonzalez A (2001) NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem 276:43775–43783

    Article  PubMed  CAS  Google Scholar 

  • Freese S, Vogts T, Speer F, Schäfer B, Passoth V, Klinner U (2011) C- and N-catabolic utilization of tricarboxylic acid cycle-related amino acids by Scheffersomyces stipitis. Yeast 28:375–390

    Article  PubMed  CAS  Google Scholar 

  • Galafassi S, Capusoni C, Moktaduzzaman M, Compagno C (2013) Utilization of nitrate abolishes the “Custers effect” in Dekkera bruxellensis and determines a different pattern of fermentation products. J Ind Microbiol Biotechnol 40:297–303

    Article  PubMed  CAS  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    PubMed  CAS  Google Scholar 

  • Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, Andre B (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27:3065–3086

    Article  PubMed  CAS  Google Scholar 

  • Holmes AR, Collings A, Farnden KJF, Sheperd MG (1989) Ammonium assimilation by Candida albicans and other yeasts: evidence for activity of glutamate synthase. J Gen Microbiol 135:1423–1430

    PubMed  CAS  Google Scholar 

  • Jauniaux JC, Grenson M (1990) GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 190:39–44

    Article  PubMed  CAS  Google Scholar 

  • Leite FCB, Basso TO, de Barros Pita W, Gombert AK, Simões DA, de Morais MA (2013) Quantitative aerobic physiology of the yeast Dekkera bruxellensis, a major contaminant in bioethanol production plants. FEMS Yeast Res 13:34–43

    Article  PubMed  CAS  Google Scholar 

  • Loureiro V, Malfeito-Ferreira M (2003) Spoilage yeasts in the wine industry. Int J Food Microbiol 86:23–50

    Article  PubMed  CAS  Google Scholar 

  • Magasanik B (2003) Ammonia assimilation by Saccharomyces cerevisiae. Eukaryot Cell 2:827–829

    Article  PubMed  CAS  Google Scholar 

  • Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18

    Article  PubMed  CAS  Google Scholar 

  • Marini AM, Vissers S, Urrestarazu A, Andre B (1994) Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J 13:3456–3463

    PubMed  CAS  Google Scholar 

  • Marini AM, Soussi-Boudekou S, Vissers S, Andre B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17:4282–4293

    PubMed  CAS  Google Scholar 

  • Marini AM, Springael JY, Frommer WB, Andre B (2000) Cross-talk between ammonium transporters in yeast and interference by the soybean SAT1 protein. Mol Microbiol 35:378–385

    Article  PubMed  CAS  Google Scholar 

  • Mendes-Ferreira A, del Olmo M, García-Martínez J, Jiménez-Martí E, Mendes-Faia A, Pérez-Ortín JE, Leão C (2007) Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation. Appl Environ Microbiol 73:3049–3060

    Article  PubMed  CAS  Google Scholar 

  • Miller SM, Magasanik B (1990) Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol 172:4927–4935

    PubMed  CAS  Google Scholar 

  • Passoth V, Blomqvist J, Schnürer J (2007) Dekkera bruxellensis and Lactobacillus vini form a stable ethanol-producing consortium in a commercial alcohol production process. Appl Environ Microbiol 73:4354–4356

    Article  PubMed  CAS  Google Scholar 

  • Pereira EVS, Dos Anjos RSG, Basílio ACM, Leite FCB, de Morais MA Jr, Simões DA (2010) Challenging metabolic engineering concepts to industrial conditions: the modifications in redox metabolism of S. cerevisiae for bioethanol. J Biotechnol 150:165

    Article  Google Scholar 

  • Regenberg B, During-Olsen L, Kielland-Brandt MC, Holmberg S (1999) Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36:317–328

    Article  PubMed  CAS  Google Scholar 

  • Riego L, Avendaño A, DeLuna A, Rodríguez E, González A (2002) GDH1 expression is regulated by GLN3, GCN4, and HAP4 under respiratory growth. Biochem Biophys Res Commun 293:79–85

    Article  PubMed  CAS  Google Scholar 

  • Romero M, Guzmán-León S, Aranda C, González-Halphen D, Valenzuela L, González A (2000) Pathways for glutamate biosynthesis in the yeast Kluyveromyces lactis. Microbiology 146:239–245

    PubMed  CAS  Google Scholar 

  • Stanbrough M, Magasanik B (1995) Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae. J Bacteriol 177:94–102

    PubMed  CAS  Google Scholar 

  • ter Schure EG, Silljé HH, Vermeulen EE, Kalhorn JW, Verkleij AJ, Boonstra J, Verrips CT (1998) Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 144:1451–1462

    Article  PubMed  Google Scholar 

  • Usaite R, Patil KR, Grotkjaer T, Nielsen J, Regenberg B (2006) Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, l-alanine, or l-glutamine limitation. Appl Environ Microbiol 72:6194–6203

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela L, Ballario P, Aranda C, Filetici P, González A (1998) Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae. J Bacteriol 180:3533–3540

    PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. 3. Genome Biol 3:0034.1–0034.11

    Article  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the Bioethanol Research Network of the State of Pernambuco (CNPq-FACEPE/PRONEM program) and the Brazilian funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco (FACEPE). VP was supported by the MicroDrive-programme at the NL-faculty of SLU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Will de Barros Pita.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Barros Pita, W., Silva, D.C., Simões, D.A. et al. Physiology and gene expression profiles of Dekkera bruxellensis in response to carbon and nitrogen availability. Antonie van Leeuwenhoek 104, 855–868 (2013). https://doi.org/10.1007/s10482-013-9998-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-9998-x

Keywords

Navigation