Skip to main content

Advertisement

Log in

Fermentation characteristics of Dekkera bruxellensis strains

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The influence of pH, temperature and carbon source (glucose and maltose) on growth rate and ethanol yield of Dekkera bruxellensis was investigated using a full-factorial design. Growth rate and ethanol yield were lower on maltose than on glucose. In controlled oxygen-limited batch cultivations, the ethanol yield of the different combinations varied from 0.42 to 0.45 g (g glucose)−1 and growth rates varied from 0.037 to 0.050 h−1. The effect of temperature on growth rate and ethanol yield was negligible. It was not possible to model neither growth rate nor ethanol yield from the full-factorial design, as only marginal differences were observed in the conditions tested. When comparing three D. bruxellensis strains and two industrial isolates of Saccharomyces cerevisiae, S. cerevisiae grew five times faster, but the ethanol yields were 0–13% lower. The glycerol yields of S. cerevisiae strains were up to six-fold higher compared to D. bruxellensis, and the biomass yields reached only 72–84% of D. bruxellensis. Our results demonstrate that D. bruxellensis is robust to large changes in pH and temperature and may have a more energy-efficient metabolism under oxygen limitation than S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott DA, Hynes SH, Ingledew WM (2005) Growth rates of Dekkera/Brettanomyces yeasts hinder their ability to compete with Saccharomyces cerevisiae in batch corn mash fermentations. Appl Microbiol Biot 66:641–647

    Article  CAS  Google Scholar 

  • Aguilar Uscanga MG, Delia ML, Strehaiano P (2003) Brettanomyces bruxellensis: effect of oxygen on growth and acetic acid production. Appl Microbiol Biotechnol 61:157–162

    CAS  Google Scholar 

  • Aguilar Uscanga MG, Escudero Abarca BI, Gomez Rodriguez J, Cortes Garcia R (2007) Carbon sources and their effect on growth, acetic acid and ethanol production by Brettanomyces bruxellensis in batch culture. J Food Process Eng 30:13–23

    Article  Google Scholar 

  • Barata A, Caldeira J, Botelheiro R, Pagliara D, Malfeito-Ferreira M, Loureiro V (2008) Survival patterns of Dekkera bruxellensis in wines and inhibitory effect of sulphur dioxide. Int J Food Microbiol 121:201–207

    Article  CAS  Google Scholar 

  • Basillo ACM, de Araujo PRL, de Morais JOF, de Silva EA, de Morais MA, Simoes DA (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56:322–326

    Article  CAS  Google Scholar 

  • Blomqvist J, Schnürer J, Passoth V (2007) Industrial ethanol production by a consortium of Dekkera bruxellensis and the lactic acid bacterium Lactobacillus vini. Poster abstract. Yeast 24:S27

    Article  CAS  Google Scholar 

  • Brandam C, Castro-Martinez C, Delia ML, Ramon-Portugal F, Strehaiano P (2008) Effect of temperature on Brettanomyces bruxellensis: metabolic and kinetic aspects. Can J Microbiol 54:11–18

    Article  CAS  Google Scholar 

  • Castro-Martinez C, Escudero-Abarca BI, Rodriguez JG, Hayward-Jones R, Aguilar-Uscanga MG (2005) Effect of physical factors on acetic acid production in Brettanomyces strains. J Food Process Eng 28:133–143

    Article  Google Scholar 

  • Chatonnet P, Dubourdieu D, Boidron JN, Pons M (1992) The origin of ethylphenols in wine. J Sci Food Agr 60:165–178

    Article  CAS  Google Scholar 

  • Ciani M, Ferraro L (1997) Role of oxygen on acetic acid production by Brettanomyces/Dekkera in winemaking. J Sci Food Agr 75:489–495

    Article  CAS  Google Scholar 

  • Couto JA, Barbosa A, Hogg T (2005) A simple cultural method for the presumptive detection of the yeasts Brettanomyces/Dekkera in wines. Lett Appl Microbiol 41:505–510

    Article  CAS  Google Scholar 

  • Dellweg H, Rizzi M, Methner H, Debus D (1984) Xylose fermentation by yeasts. 3. Comparison of Pachysolen tannophilus and Pichia stipitis. Biotechnol Lett 6:395–400

    Article  CAS  Google Scholar 

  • Dias L, Pereira-da-Silva S, Tavares M, Malfeito-Ferreira M, Loureiro V (2003) Factors affecting the production of 4-ethylphenol by the yeast Dekkera bruxellensis in enological conditions. Food Microbiol 20:377–384

    Article  CAS  Google Scholar 

  • Enrique M, Marcos JF, Yuste M, Martinez M, Valles S, Manzanares P (2008) Inhibition of the wine spoilage yeast Dekkera bruxellensis by bovine lactoferrin-derived peptides. Int J Food Microbiol 127:229–234

    Article  CAS  Google Scholar 

  • Eriksson LJE, Kettaneh-Wold N, Wikström C, Wold S (2008) Design of experiments, principles and applications. Umetrics Academy, Umetrics AB, Umeå, Sweden. www.umetrics.com

  • Fiaux J, Petek Çakar Z, Sonderegger M, Wütrich K, Szyperski T, Sauer U (2002) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2:170–180

    Article  CAS  Google Scholar 

  • Fredlund E, Blank LM, Schnürer J, Sauer U, Passoth V (2004) Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala. Appl Environ Microbiol 70:5905–5911

    Article  CAS  Google Scholar 

  • Fredlund E, Beerlage C, Melin P, Schnürer J, Passoth V (2006) Oxygen and carbon-source regulated expression of PDC and ADH genes in the respiratory yeast Pichia anomala. Yeast 23:1137–1149

    Article  CAS  Google Scholar 

  • Freer SN, Dien B, Matsuda S (2003) Production of acetic acid by Dekkera/Brettanomyces yeasts under conditions of constant pH. World J Microb Biot 19:101–105

    Article  CAS  Google Scholar 

  • Hellborg L, Piskur J (2009) Complex nature of the genome in a wine-spoilage yeast, Dekkera bruxellensis. Eukaryot Cell 8:1739–1749

    Article  CAS  Google Scholar 

  • Klinner U, Fluthgraf S, Freese S, Passoth V (2005) Aerobic induction of respiro-fermentative growth by decreasing oxygen tensions in the respiratory yeast Pichia stipitis. Appl Microbiol Biotechnol 67:247–253

    Article  CAS  Google Scholar 

  • Kurtzman CP, Fell JW (1998) The yeasts. A taxonomic study. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Liberal ATD, Basilio ACM, Resende AD, Brasileiro BTV, da Silva-Filho EA, de Morais JOF, Simões DA, Morais MA Jr (2007) Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J Appl Microbiol 102:538–547

    Google Scholar 

  • Meroth CB, Hammes WP, Hertel C (2003) Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:7453–7461

    Article  CAS  Google Scholar 

  • Miniac MD (1989) Contamination of industrial alcoholic fermentations by yeasts of the genus Brettanomyces. Ind Aliment Agricol 106:559–563

    Google Scholar 

  • Nielsen J, Villadsen J, Lidén G (2003) Bioreaction engineering principles. Kluwer Academic, New York

    Google Scholar 

  • Passoth V, Blomqvist J, Schnürer J (2007) Dekkera bruxellensis and Lactobacillus vini form a stable ethanol-producing consortium in a commercial alcohol production process. Appl Environ Microbiol 73:4354–4356

    Article  CAS  Google Scholar 

  • Phister TG, Mills DA (2003) Real-time PCR assay for detection and enumeration of Dekkera bruxellensis in wine. Appl Environ Microbiol 69:7430–7434

    Article  CAS  Google Scholar 

  • Phowchinda O, Deliadupuy ML, Strehaiano P (1995) Effects of acetic acid on growth and fermentative activity of Saccharomyces cerevisiae. Biotechnol Lett 17:237–242

    Article  CAS  Google Scholar 

  • Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31:401–408

    Article  CAS  Google Scholar 

  • Smith MT, Yamazaki M, Poot GA (1990) Dekkera, Brettanomyces and Eeniella—electrophoretic comparison of enzymes and DNA–DNA homology. Yeast 6:299–310

    Article  CAS  Google Scholar 

  • Spindler DD, Wyman CE, Grohmann K, Philippidis GP (1992) Evaluation of the cellobiose-fermenting yeast Brettanomyces custersii in the simultaneous saccharification and fermentation of cellulose. Biotechnol Lett 14:403–407

    Article  CAS  Google Scholar 

  • Truesdale GA, Downing AI, Lowden GF (1955) The solubility of oxygen in pure water and sea-water. J Appl Chem 5:53–62

    Article  CAS  Google Scholar 

  • Van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224

    Google Scholar 

  • van Nedervelde L, Debourg A (1995) Properties of Belgian acid beers and their microflora. II. Biochemical properties of Brettanomyces yeasts. Cerevisia Biotechnol 20:43–48

    Google Scholar 

  • von Stockar U, Maskow T, Liu JS, Marison IW, Patino R (2006) Thermodynamics of microbial growth and metabolism: an analysis of the current situation. J Biotechnol 121:517–533

    Article  CAS  Google Scholar 

  • Wijsman MR, Vandijken JP, Vankleeff BHA, Scheffers WA (1984) Inhibition of fermentation and growth in batch cultures of the yeast Brettanomyces intermedius upon a shift from aerobic to anaerobic conditons (Custer’s effect). Antonie van Leeuwenhook J Microb 50:183–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by the research programmes MicroDrive (http://microdrive.slu.se) and DOM (http://www.mistra.org/dom) at the Swedish University of Agricultural Sciences, Uppsala. We are grateful to Dr. Su-Lin Leong, Department of Microbiology, Swedish University of Agricultural Sciences for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Blomqvist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blomqvist, J., Eberhard, T., Schnürer, J. et al. Fermentation characteristics of Dekkera bruxellensis strains. Appl Microbiol Biotechnol 87, 1487–1497 (2010). https://doi.org/10.1007/s00253-010-2619-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2619-y

Keywords

Navigation