Skip to main content

Advertisement

Log in

Growth characteristics of Saccharomyces cerevisiae S288C in changing environmental conditions: auxo-accelerostat study

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The effect of individual environmental conditions (pH, pO2, temperature, salinity, concentration of ethanol, propanol, tryptone and yeast extract) on the specific growth rate as well as ethanol and glycerol production rate of Saccharomyces cerevisiae S288C was mapped during the fermentative growth in aerobic auxo-accelerostat cultures. The obtained steady-state values of the glycerol to ethanol formation ratio (0.1 mol mol−1) corresponding to those predicted from the stoichiometric model of fermentative yeast growth showed that the complete repression of respiration was obtained in auxostat culture and that the model is suitable for calculation of Y ATP and Q ATP values for the aerobic fermentative growth. Smooth decrease in the culture pH and dissolved oxygen concentration (pO2) down to the critical values of 2.3 and 0.8%, respectively, resulted in decrease in growth yield (Y ATP) and specific growth rate, however the specific ATP production rate (Q ATP) stayed almost constant. Increase in the concentration of biomass (>0.8 g dwt l−1), propanol (>2 g l−1) or NaCl (>15 g l−1) lead at first to the decrease in the specific growth rate and Q ATP, while Y ATP was affected only at higher concentrations. The observed decrease in Q ATP was caused by indirect rather than direct inhibition of glycolysis. The increase in tryptone concentration resulted in an increase in the specific growth rate from 0.44 to 0.62 h−1 and Y ATP from 12.5 to 18.5 mol ATP g dwt−1. This study demonstrates that the auxo-accelerostat method, besides being an efficient tool for obtaining the culture characteristics, provides also decent conditions for the experiments elucidating the control mechanisms of cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamberg K, Kask S, Laht TM, Paalme T (2003) The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study. Int J Food Microbiol 85:171–183

    Article  PubMed  CAS  Google Scholar 

  • Albers E, Larsson C, Lidén G, Niklasson C, Gustafsson L (1996) Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol 62:3187–3195

    PubMed  CAS  Google Scholar 

  • Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144

    PubMed  CAS  Google Scholar 

  • Bauchop T, Elsden SR (1960) The growth of micro-organism in relation to their energy supply. J Gen Microbiol 23:457–469

    PubMed  CAS  Google Scholar 

  • Blomberg A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182:1–8

    Article  PubMed  CAS  Google Scholar 

  • Bryson V, Szybalski W (1952) Microbial selection. Science 116:45–50

    Article  Google Scholar 

  • Büttner R, Uebel B, Genz I (1986) Der substratlimitierte pH-auxostat - eine neue methode zur kontinuierlichen kultur. Acta Biotechnol. 6:129–132

    Article  Google Scholar 

  • Cortassa S, Aon JC, Aon MA (1995) Fluxes of carbon, phosphorylation, and redox intermediates during growth of Saccharomyces cerevisiae on different carbon sources. Biotechnol Bioeng 47:193–208

    Article  CAS  Google Scholar 

  • De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156

    PubMed  CAS  Google Scholar 

  • Drews M, Kasemets K, Nisamedtinov I, Paalme T (1998) Continuous cultivation of insect and yeast cells at maximum specific growth rate. Proc Estonian Acad Sci Chem 47:175–188

    CAS  Google Scholar 

  • Fiechter A, Seghezzi W (1992) Regulation of glucose metabolism in growing yeast cells. J Biotechnol 27:27–45

    Article  CAS  Google Scholar 

  • Frick O, Wittmann C (2005) Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microbial Cell Factories 4:1475–2859

    Article  Google Scholar 

  • Hospodka I (1966) Oxygen-absorption rate-controlled feeding of substrate into aerobic microbial cultures. Biotechnol Bioeng 8:117–134

    Article  CAS  Google Scholar 

  • Jensen KF, Pedersen S (1990) Metabolic growth rate control in Escherichia coli may be consequence of sub saturation of the macromolecular biosynthesis apparatuses with substrates and catalytic components. Microbiol Rev 54:89–100

    PubMed  CAS  Google Scholar 

  • Kasemets K (2006) Effect of changing environmental conditions on the fermentative growth of Saccharomyces cerevisiae S288C: Auxo-accelerostat study. Thesis on Natural and Exact Sciences B54, TUT press, Tallinn 2006

  • Kasemets K, Drews M, Nisamedtinov I, Adamberg K, Paalme T (2003) Modification of A-stat for the characterization of microorganisms. J Microbiol Methods 55:187–200

    Article  PubMed  CAS  Google Scholar 

  • Kasemets K, Kahru A, Laht T-M, Paalme T (2006) Study of the toxic effect of short-and medium-chain monocarboxylic acids on the growth of Saccharomyces cerevisiae using the CO2-auxo-acclerostat fermentation system. Int J Food Microbiol 111:206–215

    Article  PubMed  CAS  Google Scholar 

  • Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen (2002) The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184:3909–3916

    Article  PubMed  CAS  Google Scholar 

  • Larsson C, Nilsson A, Blomberg A, Gustafsson L (1997) Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. J Bacteriol 179:7243–7250

    PubMed  CAS  Google Scholar 

  • Lidén G, Persson A, Gustafsson L (1995) Energetics and product formation by Saccharomyces cerevisiae grown in anaerobic chemostat under nitrogen limitation. Appl Microbiol Biotechnol 43:1034–1038

    Article  PubMed  Google Scholar 

  • Norbeck J, Blomberg A (1997) Metabolic and regulatory changes associated with growth of saccharomyces cerevisiae in 1.4 M NaCl. J Biol Chem 272:5544–5554

    Google Scholar 

  • Omori T, Ogawa K, Umemoto Y Yuki Y, Kajihara Y, Shimoda M, Wada H (1996) Enhancement of glycerol production by brewing yeast (Saccharomyces cerevisiae) with heat-shock treatment. J Ferm Bioeng 82:187–190

    Article  CAS  Google Scholar 

  • Oura E (1977) Reaction products of yeast fermentations. Process Biochem 12:19–21

    CAS  Google Scholar 

  • Paalme T, Elken R, Vilu R, Korhola M (1997) Growth efficiency of Saccharomyces cerevisiae on glucose/ethanol media with a smooth change in dilution rate (A-stat). Enzyme Microb Technol 20:174–181

    Article  CAS  Google Scholar 

  • Paalme T, Kahru A, Elken R, Vanatalu K, Tiisma K, Vilu R (1995) The computer-controlled continuous culture of Escherichia coli with smooth change of dilution rate. J Microbiol Methods 24:145–153

    Article  Google Scholar 

  • Paalme T, Vilu R, (1992) A new method of continuous cultivation with computer-controlled change of dilution rate. In: Karim MN, Stephanopolous G (eds) Modeling and Control of Biotechnical Processes. Pergamon Press, Oxford England, pp 299–301

    Google Scholar 

  • Petrik M, Käppeli O, Fiechter A (1983) An expanded concept for glucose effect in the yeast Saccharomyces uvarum: involvement of short and long-term regulation. J Gen Microbiol 129:43–49

    CAS  Google Scholar 

  • Quintas C, Lima-Costa E, Loureiro-Dias MC (2000) The effect of ethanol on the plasma membrane permeability of spoilage yeasts. Food Technol Biotechnol 38:47–51

    CAS  Google Scholar 

  • Rep M, Reiser V, Gartner U, Thevelein JM, Hohmann S, Ammerer G, Ruis H (1999) Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Cell Biol 19:5474–85

    CAS  Google Scholar 

  • Rice CW, Hempfling WP (1985) Nutrient-limited continuous culture in the pH-auxostat. Biotechnol Bioeng 27:187–191

    Article  CAS  Google Scholar 

  • Rizzi M, Baltes M, Theobald U, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical Model. Biotechnol Bioeng. 55:592–608

    Article  CAS  Google Scholar 

  • Rogers PJ, Stewart PR (1973) Respiratory development in Saccharomyces cerevisiae grown at controlled oxygen tension. J Bacteriol 115:88–97

    PubMed  CAS  Google Scholar 

  • Rosenfeld E, Beauvoit B (2003) Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae. Yeast 20:1115–1144

    Article  PubMed  CAS  Google Scholar 

  • Santos MM, Raghevendran V, Köttler P, Olsson L, Nielsen J (2004) Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metabol Eng 6:352–363

    Article  Google Scholar 

  • Stouthamer AH (1973) A theoretical study of the amount of ATP required for the synthesis of microbial cell material. Antonie van Leeuwenhoek 39:545–565

    PubMed  CAS  Google Scholar 

  • Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol Bioeng 55:305–316

    Article  CAS  Google Scholar 

  • van der Sluis C, Westerink BH, Dijkstal MM, Castelein SJ, van Boxtel AJ, Giuseppin MLF, Tramper J, Wijffels RH (2001) Estimation of steady-state culture characteristics during acceleration-stats with yeasts. Biotechnol Bioeng 75:267–275

    Article  PubMed  Google Scholar 

  • van Hoek P, van Dijken JP, Pronk JT (1998) Effect of specific growth rate on fermentative capacity of baker’s yeast. Appl Environ Microbiol 64:4226–4233

    PubMed  Google Scholar 

  • van Hoek P, van Dijken JP, Pronk JT (2000) Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzyme Microb Technol 26:724–736

    Article  PubMed  Google Scholar 

  • van Wuytswinkel O, Reiser V, Siderius M, Kelders MC, Ammerer G, Ruis H, Mager WH (2000) Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase pathway. Mol Microbiol 37:382–397

    Article  PubMed  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA, van Dijken JP (1990) Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:405–412

    PubMed  CAS  Google Scholar 

  • Vinter T, Paalme T, Vilu R (1992) “FermExpert” – an expert system for studies and optimisation of processes of microbial synthesis. In: Karim MN and Stephanopolous G (eds) Modeling and Control of Biotechnical Processes. Pergamon Press, Oxford England, pp 467–470

    Google Scholar 

  • Watson TG (1969) Steady state operation of a continuous culture at maximum growth rate by control of carbon dioxide production. J Gen Microbiol 59:83–89

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The financial support for this research provided by Estonian Ministry of Education and Research (targeted funding projects 0222601Bs03 and 0142497s03) and EU Structural Funds is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toomas Paalme.

Appendices

Appendix 1

Stoichiometric model of anaerobic growth of S. cerevisiae

The set of key reactions of central metabolism supporting the fermentative growth of Saccharomyces cerevisiae is shown in Fig. 1. Assuming that the concentration of central metabolites remains constant in the cells during exponential growth of the cells, the mass balance equations for each key intermediate can be written:

1. Glucose-6-P:

rGLC = PGI +  ZWF1o 1

2. 6-P-glyconolactone:

ZWF1 = pgl

3. 6-P-glyconate:

pgl =  GND1,2

4. Ribulose-5-P:

GND1,2 =  RKI1 + RPE1

5. Xylulose-5-P:

RPE1 = TLK1,2a +  TLK1,2b

6. Ribose-5-P:

RKI1 =  TLK1,2a o 3

7. Seduheptulose-7-P:

TLK1,2a  = TAL1

8. Erythrose-4-P:

TAL1 = TLK1,2b o 4

9. Fructose-6-P:

PGI +  TLK1,2b  + TAL1 = PFK1,2o 2

10. Fructose-1,6-P:

PFK1,2 =  FBA1

11. Dihydroxyacetone-P:

FBA1 = TPI1r GLR

12. Glyceraldehyde-3-P:

TLK1,2a +  TLK1,2b  + FBA1 + TPI1 = TAL1 + TDH1,2,3o 5

13. 1,3-Diphosphoglycerate:

TDH1,2,3 = PGK

14. 3-Phosphoglycerate:

PGK =  GPM +  o 6

15. 2-Phosphoglycerate:

GPM =  ENO

16. Phosphoenolpyruvate:

ENO =  PYK1 +  o 7

17. NADPH:

ZWF1 +  GND1,2 + IDP1 + ALD6o NADP

18. 2-Ketoglutarate:

IDP1o 11

19. Oxaloacetate m :

OAC =  CIT

20. Acetyl-CoA m :

CIT =  YAT

21. Citrate:

CIT =  IDP1

22. Oxaloacetate c :

OAC +  o 10 = PYC

23. Pyruvate:

PYK1o 8 + PDC +  PYC

24. Acetalaldehyde

PDC =  r ETH + ALD6

25. Acetyl-CoA c :

ALD6 = YAT +  o 9

26. NADH:

TDH1,2,3r ETHr GLRo NADH

27. ATP:

q ATP = −r GLC − PFK1,2 +  PGK +  PYK1−PYC− 2* ALD6

The equation system consists of 27 formulas (metabolites) and 41 variables (relative net fluxes). The 11 relative fluxes o i (mmol g dwt−1) represent the anabolic demands of corresponding key intermediates (Fig. 1), and oNADH, oNADPH the anabolic demands of corresponding co-factors required for biomass synthesis. If the macromolecular composition of the cells is known, the values of anabolic demands can be determined from the composed stoichiometric matrix, similar to that presented by Cortassa et al. (1995). The three fluxes r GLC, r GLR and r ETH are experimentally measured (r i  = Q i /μ, Formula 2 and 3). As altogether 16 variables can be calculated or measured the equation system becomes over determined (2 determined variables more than the degrees of freedom).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasemets, K., Nisamedtinov, I., Laht, TM. et al. Growth characteristics of Saccharomyces cerevisiae S288C in changing environmental conditions: auxo-accelerostat study. Antonie van Leeuwenhoek 92, 109–128 (2007). https://doi.org/10.1007/s10482-007-9141-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-007-9141-y

Keywords

Navigation