Skip to main content
Log in

Optimal pricing and financing decision of dual-channel green supply chain considering product differentiation and blockchain

  • Original-Comparative Computational Study
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper constructs a dual-channel green supply chain model that includes a well-capitalized retailer and e-commerce platform, as well as a capital-constrained manufacturer. The manufacturer sells two different green quality products through the e-commerce platform and the retailer. There are two portfolio financing strategies for the manufacturer to choose and decide whether to use blockchain. We establish four models of whether to use blockchain under the EP financing strategy (e-commerce platform financing and prepayment financing) and the EB financing strategy (e-commerce platform financing and bank financing). By comparing the optimal solutions under four models, we discover some results. Firstly, we discover that the wholesale price will be higher than the selling price of the online channel when the product greenness difference between the two channels is large, and the optimal expected profit of the retailer is not related to product green differences. Secondly, the EP financing strategy is the optimal financing strategy choice for the manufacturer regardless of whether blockchain is used or not. Thirdly, when the cost per unit of using blockchain is greater than a certain threshold, the manufacturer should choose not to use blockchain. Finally, the manufacturer's acceptable blockchain usage threshold under the EP financing strategy is higher than under the EB financing strategy, and it decreases with the smaller product greenness difference between the two channels under the EP financing strategy. In addition, we also make an extension that verifies our model and findings are robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

We have not used special data; all data in this article are used to analyze and validate the corollary of our study.

Code availability

Not applicable.

References

Download references

Acknowledgements

This study was supported by the National Social Science Foundation of China Key Program (23AGL010), the Annual Philosophy and Social Science Planning Project of Henan Province (2023BJJ019), the Support Program for Innovative Talents in Philosophy and Social Science in Universities of Henan Province (2024-CXRC-04), the National Science Foundation of China Youth Program (No.72302142), and the General Project of Humanities and Social Science Research in Universities of Henan Province (2024-ZZJH-021).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yu Xia, Rongrong Shang, Mingxia Wei and Zhenke Wei. The first draft of the manuscript was written by Yu Xia and Rongrong Shang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mingxia Wei.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical approval

Not applicable.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Proposition 1

In the model PN, the expected profits of supply chain members are

$$\begin{array}{c}E\left({\pi }_{r}^{PN}\right)=\left({p}_{r}^{PN}-{w}^{PN}\right)\left(1-{p}_{r}^{PN}+\theta {p}_{m}^{PN}+\beta \right)+{r}_{1}\left[c\left(1-{p}_{r}^{PN}+\theta {p}_{m}^{PN}+\beta \right)+\frac{1}{2}\rho \right]\end{array}$$
(A.1)
$$E\left({\pi }_{m}^{PN}\right)=\left({w}^{PN}-c\right)\left(1-{p}_{r}^{PN}+\theta {p}_{m}^{PN}+\beta \right)+\left({p}_{m}^{PN}-c\right)\left(1-{p}_{m}^{PN}+\theta {p}_{r}^{PN}+\beta t\right)-\frac{1}{2}\rho $$
$$\begin{array}{c}-{r}_{0}c\left(1-{p}_{m}^{PN}+\theta {p}_{r}^{PN}+\beta t\right)-{r}_{1}\left[c\left(1-{p}_{r}^{PN}+\theta {p}_{m}^{PN}+\beta \right)+\frac{1}{2}\rho \right]-G\end{array}$$
(A.2)
$$\begin{array}{c}{E( \pi }_{f}^{PN})= G+{r}_{0}c\left(1-{p}_{m}^{PN}+\theta {p}_{r}^{PN}+\beta t\right)\end{array}$$
(A.3)

In the EP financing strategy, when not using blockchain, we obtain \(\frac{\partial {E\left({\pi }_{r}^{PN}\right)}^{2}}{\partial {{p}_{r}^{PN}}^{2}}=-2<0\), so \(E\left({\pi }_{r}^{PN}\right)\) is a strictly concave function concerning \({p}_{r}^{PN}\). According to the inverse inductive solution method, let \(\frac{\partial E\left({\pi }_{r}^{PN}\right)}{\partial {p}_{r}^{PN}}=0\), we can obtain the optimal pricing for the retail channel \({p}_{r}^{PN}\) concerning \({w}^{PN}\) and \({p}_{m}^{PN}\) as follows:

$$\begin{array}{c}{p}_{r}^{PN}\left({w}^{PN},{p}_{m}^{PN}\right)=\frac{\beta -{r}_{1}c+\theta {p}_{m}^{PN}+1+{w}^{PN}}{2}\end{array}$$
(A.4)

Place \({p}_{r}^{PN}\left({w}^{PN},{p}_{m}^{PN}\right)\) substitute into \(E\left({\pi }_{m}^{PN}\right)\), we will obtain the expression of \(E\left({\pi }_{m}^{PN}\right)\) concerning \({w}^{PN}\) and \({p}_{m}^{PN}\). The Hessian matrix of \(E\left({\pi }_{m}^{PN}\right)\) concerning \({w}^{PN}\) and \({p}_{m}^{PN}\) is obtained by calculating as follows:

$$\begin{array}{c}{H}_{E\left({\pi }_{m}^{PN}\right)\left({w}^{PN},{p}_{m}^{PN}\right)}=\left[\begin{array}{cc}{\theta }^{2}-2& \theta \\ \theta & -1\end{array}\right]\end{array}$$
(A.5)

Due to \(0<\theta <1\), \(\frac{\partial {E\left({\pi }_{m}^{PN}\right)}^{2}}{\partial {{p}_{m}^{PN}}^{2}}={\theta }^{2}-2<0\), and \({H}_{E\left({\pi }_{m}^{PN}\right)\left({w}^{PN},{p}_{m}^{PN}\right)}=2-2{\theta }^{2}>0\), therefore \({H}_{E\left({\pi }_{m}^{PN}\right)\left({w}^{PN},{p}_{m}^{PN}\right)}\) is a negative definite matrix. \(E\left({\pi }_{m}^{PN}\right)\) is a strictly combinatorial concave function on \({w}^{PN}\) and \({p}_{m}^{PN}\).

Let\(\frac{\partial E\left({\pi }_{m}^{PN}\right)}{\partial {p}_{m}^{PN}}=0\), \(\frac{\partial E\left({\pi }_{m}^{PN}\right)}{\partial {w}^{PN}}=0\), we get

$$\begin{array}{c}{p}_{m}^{PN}\left({w}^{PN}\right)=\frac{c\left({r}_{0}+1\right){\theta }^{2}+\left[\left({2r}_{2}+1\right)c-\left(\beta +1+2{w}^{PN}\right)\right]\theta -2\left({r}_{0}+1\right)c-2\beta t-2}{2\left({\theta }^{2}-2\right)}\end{array}$$
(A.6)
$$\begin{array}{c}{w}^{PN}\left({p}_{m}^{PN}\right)=\frac{1+c-c\theta -{r}_{0}c\theta +{r}_{1}c+2\theta {p}_{m}^{PN}+\beta }{2}\end{array}$$
(A.7)

Substituting \({p}_{m}^{PN}\left({w}^{PN}\right)\) and \({w}^{PN}\left({p}_{m}^{PN}\right)\) into each other to solve for

$$\begin{array}{c}{p}_{m}^{PN*}=\frac{c\left({r}_{0}+1\right){\theta }^{2}-\left(\beta +1\right)\theta -\left({r}_{0}+1\right)c-\beta t-1}{2\left({\theta }^{2}-1\right)}\end{array}$$
(A.8)
$$\begin{array}{c}{w}^{PN*}=\frac{c\left(2{r}_{1}+1\right){\theta }^{2}-\left(\beta t+1\right)\theta -\left(2{r}_{1}+1\right)c-\beta -1}{2\left({\theta }^{2}-1\right)}\end{array}$$
(A.9)

Substituting \({p}_{m}^{PN}\) and \({w}^{PN}\) into \({p}_{r}^{PN}\left({w}^{PN},{p}_{m}^{PN}\right)\) obtains

$$\begin{array}{c}{p}_{r}^{PN*}=\frac{c\left({r}_{0}+1\right){\theta }^{3}+\left(\beta +1+c\right){\theta }^{2}-\left[\left({r}_{0}+1\right)c+2\beta t+2\right]\theta -3\beta -3-c}{4\left({\theta }^{2}-1\right)}\end{array}$$
(A.10)

Substituting \({p}_{m}^{PN}\), \({w}^{PN}\), and \({p}_{r}^{PN}\) into \(E\left({\pi }_{r}^{PN}\right),E\left({\pi }_{m}^{PN}\right),\mathrm{ and }E\left({\pi }_{f}^{PN}\right)\), we obtain

$$\begin{array}{c}{E\left({\pi }_{r}^{PN}\right)}^{*}=\frac{{\left[\left({r}_{0}+1\right)\theta -1\right]}^{2}{c}^{2}+2c\left(\beta +1\right)\left[\left({r}_{0}+1\right)\theta -1\right]+{\beta }^{2}+2\beta +8{r}_{1}\rho +1}{16}\end{array}$$
(A.11)
$$\begin{array}{c}{E\left({\pi }_{m}^{PN}\right)}^{*}=\frac{{A}_{1}{\theta }^{3}+{B}_{1}{\theta }^{2}+{C}_{1}\theta -\left(2{{r}_{0}}^{2}+4{r}_{0}+3\right){c}^{2}+{D}_{1}c+{E}_{1}+8G}{8\left({\theta }^{2}-1\right)}\end{array}$$
(A.12)
$$\begin{array}{c}{E\left({\pi }_{f}^{PN}\right)}^{*}=\frac{\left[\left({\theta }^{2}-2\right){r}_{0}+{\theta }^{2}+\theta -2\right]{r}_{0}{c}^{2}+{r}_{0}c\left[\left(\beta +1\right)\theta +2\beta t+2\right]}{4} +G\end{array}$$
(A.13)

(\({A}_{1}=-{c}^{2}{\left({r}_{0}+1\right)}^{2}{\theta }^{4}-2c\left({r}_{0}+1\right)\left(\beta +1+c\right)\); \({B}_{1}=\left(3{{r}_{0}}^{2}+6{r}_{0}+4\right){c}^{2}-\left[4\beta \left({r}_{0}t+t+\frac{1}{2}\right)+\left(4{r}_{0}+6\right)\right]c-{\beta }^{2}-2\beta -1-\left(4{r}_{1}+4\right)\rho -8G\); \({C}_{1}=\left(2{r}_{0}+2\right){c}^{2}+2\left({r}_{0}+1\right)\left(\beta +1\right)c-4\left(\beta +1\right)\left(\beta t+1\right)\); \({D}_{1}=4\beta \left({r}_{0}t+t+\frac{1}{2}\right)+\left(4{r}_{0}+6\right)\); \({E}_{1}=-\left(2{t}^{2}+1\right){\beta }^{2}-4\beta \left(t+\frac{1}{2}\right)-3{a}^{2}+\left(4{r}_{1}+4\right)\rho \)).

Proof of Corollary 1

  1. (1)

    \(\frac{\partial {w}^{PN*}}{\partial t}=-\frac{\theta \beta }{2\left({\theta }^{2}-1\right)}>0\)

  2. (2)

    \(\frac{\partial {p}_{m}^{PN*}}{\partial t}=-\frac{\beta }{2\left({\theta }^{2}-1\right)}>0\)

  3. (3)

    \(\frac{\partial {p}_{r}^{PN*}}{\partial t}=-\frac{\theta \beta }{2\left({\theta }^{2}-1\right)}>0\)

  4. (4)

    \(\frac{\partial {E\left({\pi }_{r}^{PN}\right)}^{*}}{\partial t}=0\)

  5. (5)

    \(\frac{\partial {E\left({\pi }_{m}^{PN}\right)}^{*}}{\partial t}=-\frac{\beta \left[c\left({r}_{0}+1\right){\theta }^{2}+\left(\beta +1\right)\theta -c\left({r}_{0}+1\right)+\beta t+1\right]}{2\left({\theta }^{2}-1\right)}>0\)

  6. (6)

    \(\frac{\partial {{E( \pi }_{f}^{PN})}^{*}}{\partial t}=\frac{{r}_{0}c\beta }{2}>0\)

Proof of Proposition 2

In the model PB, the expected profits of supply chain members are

$$\begin{aligned} E\left({\pi }_{r}^{PB}\right)&=\left({p}_{r}^{PB}-{w}^{PB}-b\right)\left(1+\frac{h}{2}-{p}_{r}^{PB}+\theta {p}_{m}^{PB}+\beta \right)\\ &\quad +{r}_{1}\left[\left(c+b\right)\left(1+\frac{h}{2}-{p}_{r}^{PB}+\theta {p}_{m}^{PB}+\beta \right)+\frac{1}{2}\rho \right]\end{aligned}$$
(A.14)
$$\begin{aligned} E\left({\pi }_{m}^{PB}\right)&=\left({w}^{PB}-c-b\right)\left(1+\frac{h}{2}-{p}_{r}^{PB}+\theta {p}_{m}^{PB}+\beta \right)\\ &\quad +\left({p}_{m}^{PB}-c-2b\right)\left(1+\frac{h}{2}-{p}_{m}^{PB}+\theta {p}_{r}^{PB}+\beta t\right)-\frac{1}{2}\rho \end{aligned}$$
$$\begin{array}{c}-{r}_{0}\left(c+2b\right)\left(1+\frac{h}{2}-{p}_{m}^{PB}+\theta {p}_{r}^{PB}+\beta t\right)-{r}_{1}\left[\left(c+b\right)\left(1+\frac{h}{2}-{p}_{r}^{PB}+\theta {p}_{m}^{PB}+\beta \right)+\frac{1}{2}\rho \right]-G\end{array}$$
(A.15)
$$\begin{array}{c}E\left({\pi }_{f}^{PB}\right)= G+{r}_{0}\left(c+2b\right)\left(1-{p}_{m}^{PB}+\theta {p}_{r}^{PB}+\beta t\right)\end{array}$$
(A.16)

In the EP financing strategy, when using blockchain, we obtain \(\frac{{\partial E\left({\pi }_{r}^{PB}\right)}^{2}}{\partial {{p}_{r}^{PB}}^{2}}=-2<0\), so \(E\left({\pi }_{r}^{PB}\right)\) is a strictly concave function concerning \({p}_{r}^{PB}\). According to the inverse inductive solution method, let \(\frac{\partial E\left({\pi }_{r}^{PB}\right)}{\partial {p}_{r}^{PB}}=0\), we can obtain the optimal pricing for the retail channel \({p}_{r}^{PB}\) concerning \({w}^{PB}\) and \({p}_{m}^{PB}\) as follows:

$$\begin{array}{c}{p}_{r}^{PB}\left({w}^{PB},{p}_{m}^{PB}\right)=\frac{\beta -{r}_{1}b-{r}_{1}c+\theta {p}_{m}^{PB}+1+{w}^{PB}+b}{2}+\frac{h}{4}\end{array}$$
(A.17)

Place \({p}_{r}^{PB}\left({w}^{PB},{p}_{m}^{PB}\right)\) substitute into \(E\left({\pi }_{m}^{PB}\right)\), we will obtain the expression of \(E\left({\pi }_{m}^{PB}\right)\) concerning \({w}^{PB}\) and \({p}_{m}^{PB}\). The Hessian matrix of \(E\left({\pi }_{m}^{PB}\right)\) concerning \({w}^{PB}\) and \({p}_{m}^{PB}\) is obtained by calculating as follows:

$$\begin{array}{c}{H}_{E\left({\pi }_{m}^{PB}\right)\left({w}^{PB},{p}_{m}^{PB}\right)}=\left[\begin{array}{cc}{\theta }^{2}-2& \theta \\ \theta & -1\end{array}\right]\end{array}$$
(A.18)

Due to \(0<\theta <1\),\(\frac{\partial {E\left({\pi }_{m}^{PB}\right)}^{2}}{\partial {{p}_{m}^{PB}}^{2}}={\theta }^{2}-2<0\), and \({H}_{E\left({\pi }_{m}^{PB}\right)\left({w}^{PB},{p}_{m}^{PB}\right)}=2-2{\theta }^{2}>0\), therefore \({H}_{E\left({\pi }_{m}^{PB}\right)\left({w}^{PB},{p}_{m}^{PB}\right)}\) is a negative definite matrix. \(E\left({\pi }_{m}^{PB}\right)\) is a strictly combinatorial concave function on \({w}^{PB}\) and \({p}_{m}^{PB}\).

Let\(\frac{\partial E\left({\pi }_{m}^{PB}\right)}{\partial {p}_{m}^{PB}}=0\), \(\frac{\partial E\left({\pi }_{m}^{PB}\right)}{\partial {w}^{PB}}=0\),we get

$$\begin{array}{c}{p}_{m}^{PB}\left({w}^{PB}\right)=\frac{4\left({r}_{0}+1\right)\left(\frac{c}{2}+b\right){\theta }^{2}+\left[\left(4{r}_{1}+2\right)c+4{r}_{1}b-\left(2\beta +2+h+4{w}^{PB}\right)\right]\theta -8\left({r}_{0}+1\right)b-4\left({r}_{0}+1\right)c-4\left(\beta t+1\right)-2h}{4\left({\theta }^{2}-2\right)}\end{array}$$
(A.19)
$$\begin{array}{c}{w}^{PB}\left({p}_{m}^{PB}\right)=\frac{1+c-2\theta b-c\theta -2{r}_{0}\theta b-{r}_{0}c\theta +2{r}_{1}c+2\theta {p}_{m}^{PB}+\beta +2{r}_{1}b}{2}+\frac{h}{4}\end{array}$$
(A.20)

Substituting \({p}_{m}^{PB}\left({w}^{PB}\right)\) and \({w}^{PB}\left({p}_{m}^{PB}\right)\) into each other to solve for

$$\begin{array}{c}{w}^{PB*}=\frac{\left[4\left(b+c\right){r}_{1}+2c\right]{\theta }^{2}-\left(2\beta t+2+h\right)\theta -4\left(b+c\right){r}_{1}-2-2\beta t-2c-h}{4\left({\theta }^{2}-1\right)}\end{array}$$
(A.21)
$$\begin{array}{c}{p}_{m}^{PB*}=\frac{4\left({r}_{0}+1\right)\left(\frac{c}{2}+b\right){\theta }^{2}-\left(2\beta +2+h\right)\theta -4\left({r}_{0}+1\right)b-2\left({r}_{0}+1\right)c-2\left(\beta t+1\right)-h}{4\left({\theta }^{2}-1\right)}\end{array}$$
(A.22)

Substituting \({p}_{m}^{PB}\) and \({w}^{PB}\) into \({p}_{r}^{PB}\left({w}^{PB},{p}_{m}^{PB}\right)\) obtains

$$\begin{array}{c}{p}_{r}^{PB*}=\frac{\left[4\left({r}_{0}+1\right)\left(\frac{c}{2}+b\right)\right]{\theta }^{3}+\left(2\beta +2+4b+2c+h\right){\theta }^{2}-{A}_{2}\theta -6\beta -6-4b-2c-3h}{12\left({\theta }^{2}-1\right)}\end{array}$$
(A.23)

Substituting \({p}_{m}^{PB}\), \({w}^{PB}\), and \({p}_{r}^{PB}\) into \(E\left({\pi }_{r}^{PB}\right),E\left({\pi }_{m}^{PB}\right),\mathrm{ and }E\left({\pi }_{f}^{PB}\right)\), we obtain

$$\begin{array}{c}{E\left({\pi }_{r}^{PB}\right)}^{*}=\frac{{\left(\frac{c}{2}+b\right)}^{2}{\left({r}_{0}+1\right)}^{2}{\theta }^{2}+\left(\beta +1-2b-c+\frac{h}{2}\right)\left(\frac{c}{2}+b\right)\left({r}_{0}+1\right)\theta +{b}^{2}+4{B}_{2}+4{C}_{2}}{4}\end{array}$$
(A.24)
$$\begin{array}{c}{E\left({\pi }_{m}^{PB}\right)}^{*}=\frac{{D}_{2}{\theta }^{3}+{E}_{2}{\theta }^{2}{+F}_{2}\theta -\left(32{{r}_{0}}^{2}+64{r}_{0}+48\right){b}^{2}+{H}_{2}b-\left(8{{r}_{0}}^{2}+16{r}_{0}+12\right){c}^{2}+{I}_{2}c+{J}_{2}}{32{\theta }^{2}-32}\end{array}$$
(A.25)
$$\begin{array}{c}{E\left({\pi }_{f}^{PB}\right)}^{*}= \left(\frac{c}{2}+b\right)\left({\theta }^{2}-2\right){{r}_{0}}^{2}+{K}_{2}\left(\frac{c}{2}+b\right){r}_{0}+G\end{array}$$
(A.26)
$$ \begin{aligned} & (A_{2} = 4\left( {r_{0} + 1} \right)b + 2\left( {r_{0} + 1} \right)c + 4\beta t + 4 + 2h;\;B_{2} \\ &\qquad = \frac{{\left( {2 + h} \right)\beta }}{{16}} + \frac{{8r_{1} \rho + 1 + h}}{{16}} + \frac{{h^{2} }}{{64}};\;C_{2} = \frac{{4c^{2} - \left( {8\beta + 8 + 4h} \right)c + 4\beta ^{2} }}{{16}} \\ &\qquad\quad + \frac{{\left( { - 16\beta - 16 + 16c - 8h} \right)b}}{{64}};\\ &D_{2} = - 16\left( {\frac{c}{2} + b} \right)^{2} \left( {r_{0} + 1} \right)^{2} \theta ^{4} - 16\left( {\beta + 1 + 2b + c + \frac{h}{2}} \right)\left( {\frac{c}{2} + b} \right)\left( {r + 1} \right); \\ & E_{2} = \left( {48r_{0}^{2} + 96r_{0} + 64} \right)b^{2}\\ &\qquad\quad + \left[ {\left( {48r_{0}^{2} + 96r_{0} + 64} \right)c - \left( {32\beta t + 32 + 16h} \right)r_{0} - \left( {32t + 16} \right)\beta - 48 - 24h} \right]b\\ &\qquad\quad + \left( {12r_{0}^{2} + 24r_{0} + 16} \right)c^{2} - \left[ {\left( {16\beta t + 16 + 8h} \right)r_{0} + \left( {16t + 8} \right)\beta + 24 + 12h} \right]c\\ &\qquad\quad - 4\beta ^{2} - 8\beta \left( {1 + \frac{h}{2}} \right) - 4 - 4h - h^{2} - \left( {16r_{1} + 16} \right)\rho - 32G \\ & F_{2} = \left({32r_{0} + 32} \right)b^{2} + 16b\left({\beta + 1 + 2c + \frac{h}{2}} \right)\left( {r_{0} + 1} \right) + \left( {8r + 8} \right)c^{2} + 8c\left( {\beta + 1 + \frac{h}{2}} \right)\left( {r_{0} + 1} \right)\\ &\qquad\quad - 16\left( {\beta + 1 + \frac{h}{2}} \right)\left( {\beta t + 1 + \frac{h}{2}} \right) \\ & H_{2} = - \left({32r_{0}^{2} + 64r_{0} + 48} \right)c + \left( {32\beta t + 32 + 16h} \right)r_{0} + \left( {32t + 16} \right)\beta + 48 + 24h;\\ & I_{2} = \left( {16\beta t + 16 + 8h} \right)r_{0} + \left( {16t + 8} \right)\beta + 24 + 12h \\ & J_{2} = - \left( {8t^{2} + 4} \right)\beta ^{2} - 16\beta \left( {1 + \frac{h}{2}} \right)\left( {t + \frac{1}{2}} \right) - 12 - 12h - 3h^{2} + \left( {16r_{1} + 16} \right)\rho + 32G;\\ & K_{2} = [(\theta ^{2} + \theta - 2)b + \frac{{\theta ^{2} + \theta - 2}}{2}c + \theta \frac{{2\beta + 2 + h}}{4} + \beta t + 1 + \frac{h}{2}]) \\ \end{aligned} $$

Proof of Corollary 2

  1. (1)

    \(\frac{\partial {w}^{PB*}}{\partial t}=-\frac{\theta \beta }{2\left({\theta }^{2}-1\right)}>0\)

  2. (2)

    \(\frac{\partial {p}_{m}^{PB*}}{\partial t}=-\frac{\beta }{2\left({\theta }^{2}-1\right)}>0\)

  3. (3)

    \(\frac{\partial {p}_{r}^{PB*}}{\partial t}=-\frac{\theta \beta }{2\left({\theta }^{2}-1\right)}>0\)

  4. (4)

    \(\frac{\partial {E\left({\pi }_{r}^{PB}\right)}^{*}}{\partial t} =0\)

  5. (5)

    \(\frac{\partial {E\left({\pi }_{m}^{PB}\right)}^{*}}{\partial t}=-\frac{2\beta \left[2\left(\frac{c}{2}+b\right)\left({r}_{0}+1\right){\theta }^{2}+\left(\beta +1+\frac{h}{2}\right)\theta -\left(2b+c\right)\left({r}_{0}+1\right)+\beta t+1+\frac{h}{2}\right]}{4\left({\theta }^{2}-1\right)}>0\)

  6. (6)

    \(\frac{\partial E{\left({\pi }_{f}^{PB}\right)}^{*}}{\partial t}=\beta {r}_{0}\left(\frac{c }{2}+b\right)>0\)

Proof of Corollary 3

  1. (1)

    \(\frac{\partial {w}^{PB*}}{\partial b}={r}_{1}>0\)

  2. (2)

    \(\frac{\partial {p}_{m}^{PB*}}{\partial b}={r}_{0}+1>0\)

  3. (3)

    \(\frac{\partial {p}_{r}^{PB*}}{\partial b}=\frac{\left(1+{r}_{0}\right)\theta +1}{2}>0\)

  4. (4)

    When \(0<b<{b}_{1}\), \(\frac{\partial {E\left({\pi }_{r}^{PB}\right)}^{*}}{\partial b}<0\); \(b>{b}_{1}\), \(\frac{\partial {E\left({\pi }_{r}^{PB}\right)}^{*}}{\partial b}>0\).

  5. (5)

    When \(0<b<{b}_{2}\), \(\frac{\partial {E\left({\pi }_{m}^{PB}\right)}^{*}}{\partial b}<0\); \(b>{b}_{2}\), \(\frac{\partial {E\left({\pi }_{m}^{PB}\right)}^{*}}{\partial b}>0\).

  6. (6)

    When \(0<b<{b}_{3}\),\(\frac{\partial {E\left({\pi }_{f}^{PB}\right)}^{*}}{\partial b}>0\); \(b>{b}_{3}\), \(\frac{\partial {E\left({\pi }_{f}^{PB}\right)}^{*}}{\partial b}<0.\)

    $$ \begin{gathered} \left( {b_{1} = \frac{{2\theta r_{0} c + 2\beta + 2\theta c + h - 2c + 2}}{{4\left( {1 - \theta - r_{0} \theta } \right)}}; } \right. \hfill \\ b_{2} = \frac{\begin{array}{c} - 2c( {r_{0} + 1} )\theta^{2} - ( {2\beta + 2 + 4c + h} )( {r_{0} + 1} )\theta + 4r_{0}^{2} c\\ - ({4\beta t + 4 - 8c + 2h} )r_{0} + 6c - 4\beta t - 2\beta - 6 - 3h\end{array}}{{4( {r_{0} + 1} )^{2} \theta^{2} + ( {8r_{0} + 8} )\theta - 8r_{0}^{2} - 16r_{0} - 12}}; \hfill \\ \left. {b_{3} = \frac{{ - 4c\left( {r_{0} + 1} \right)\theta^{2} - \left( {2\beta + 2 + 4c + h} \right)\theta + \left( {8r_{0} + 8} \right)c - 4\beta t - 4 - 2h}}{{8\left( {r_{0} \theta^{2} + \theta^{2} - 2r_{0} + \theta - 2} \right)}}} \right) \hfill \\ \end{gathered} $$

Proof of Proposition 3

Under the model BN, the expected profits of supply chain members are

$$\begin{array}{c}E\left({\pi }_{r}^{BN}\right)=\left({p}_{r}^{BN}-{w}^{BN}\right)\left(1-{p}_{r}^{BN}+\theta {p}_{m}^{BN}+\beta \right)\end{array}$$
(A.27)
$$\begin{array}{c}E\left({\pi }_{m}^{BN}\right)=\left({w}^{BN}-c\right)\left(1-{p}_{r}^{BN}+\theta {p}_{m}^{BN}+\beta \right)+\left({p}_{m}^{BN}-c\right)\left(1-{p}_{m}^{BN}+\theta {p}_{r}^{BN}+\beta t\right)\\ -\frac{1}{2}\rho -{r}_{0}c\left(1-{p}_{m}^{BN}+\theta {p}_{r}^{BN}+\beta t\right)-{r}_{2}\left[c\left(1-{p}_{r}^{BN}+\theta {p}_{m}^{BN}+\beta \right)+\frac{1}{2}\rho \right]-G\end{array}$$
(A.28)
$$\begin{array}{c}{E( \pi }_{f}^{BN})= G+{r}_{0}c\left(1-{p}_{m}^{BN}+\theta {p}_{r}^{BN}+\beta t\right)\end{array}$$
(A.29)

In the EB financing strategy, when not using blockchain, we obtain \(\frac{\partial {E\left({\pi }_{r}^{BN}\right)}^{2}}{\partial {{p}_{r}^{BN}}^{2}}=-2<0\), so \(E\left({\pi }_{r}^{BN}\right)\) is a strictly concave function concerning \({p}_{r}^{BN}\). According to the inverse inductive solution method, let \(\frac{\partial E\left({\pi }_{r}^{BN}\right)}{\partial {p}_{r}^{BN}}=0\), we can obtain the optimal pricing for the retail channel \({p}_{r}^{BN}\) concerning \({w}^{BN}\) and \({p}_{m}^{BN}\) as follows:

$$\begin{array}{c}{p}_{r}^{BN}\left({w}^{BN},{p}_{m}^{BN}\right)=\frac{\beta +\theta {p}_{m}^{BN}+1+{w}^{BN}}{2}\left(A.30\right)\end{array}$$

Place \({p}_{r}^{BN}\left({w}^{BN},{p}_{m}^{BN}\right)\) substitute into \(E\left({\pi }_{m}^{BN}\right)\), we will obtain the expression of \(E\left({\pi }_{m}^{BN}\right)\) concerning \({w}^{BN}\) and \({p}_{m}^{BN}\). The Hessian matrix of \(E\left({\pi }_{m}^{BN}\right)\) concerning \({w}^{BN}\) and \({p}_{m}^{BN}\) is obtained by calculating as follows:

$$\begin{array}{c}{H}_{E\left({\pi }_{m}^{BN}\right)\left({w}^{BN},{p}_{m}^{BN}\right)}=\left[\begin{array}{cc}{\theta }^{2}-2& \theta \\ \theta & -1\end{array}\right]\end{array}$$
(A.31)

Due to \(0<\theta <1\), \(\frac{\partial {E\left({\pi }_{m}^{BN}\right)}^{2}}{\partial {{p}_{m}^{BN}}^{2}}={\theta }^{2}-2<0\), and \({H}_{E\left({\pi }_{m}^{BN}\right)\left({w}^{BN},{p}_{m}^{BN}\right)}=2-2{\theta }^{2}>0\), therefore \({H}_{E\left({\pi }_{m}^{BN}\right)\left({w}^{BN},{p}_{m}^{BN}\right)}\) is a negative definite matrix. \(E\left({\pi }_{m}^{BN}\right)\) is a strictly combinatorial concave function on \({w}^{BN}\) and \({p}_{m}^{BN}\).

Let \(\frac{\partial E\left({\pi }_{m}^{BN}\right)}{\partial {p}_{m}^{BN}}=0\), \(\frac{\partial E\left({\pi }_{m}^{BN}\right)}{\partial {w}^{BN}}=0\), we get

$$\begin{array}{c}{p}_{m}^{BN}\left({w}^{BN}\right)=\frac{c\left({r}_{0}+1\right){\theta }^{2}+\left[\left({r}_{2}+1\right)c-\left(\beta +1+2{w}^{BN}\right)\right]\theta -2\left({r}_{0}+1\right)c-2\beta t-2}{2\left({\theta }^{2}-2\right)}\end{array}$$
(A.32)
$$\begin{array}{c}{w}^{BN}\left({p}_{m}^{BN}\right)=\frac{1+c-c\theta -{r}_{0}c\theta +{r}_{2}c+2\theta {p}_{m}^{BN}+\beta }{2}\end{array}$$
(A.33)

Substituting \({p}_{m}^{BN}\left({w}^{BN}\right)\) and \({w}^{BN}\left({p}_{m}^{BN}\right)\) into each other to solve for

$$\begin{array}{c}{p}_{m}^{BN*}=\frac{c\left({r}_{0}+1\right){\theta }^{2}-\left(\beta +1\right)\theta -\left({r}_{0}+1\right)c-\beta t-1}{2\left({\theta }^{2}-1\right)}\end{array}$$
(A.34)
$$\begin{array}{c}{w}^{BN*}=\frac{c\left({r}_{2}+1\right){\theta }^{2}-\left(\beta t+1\right)\theta -\left({r}_{2}+1\right)c-\beta -1}{2\left({\theta }^{2}-1\right)}\end{array}$$
(A.35)

Substituting \({p}_{m}^{BN}\) and \({w}^{BN}\) into \({p}_{r}^{BN}\left({w}^{BN},{p}_{m}^{BN}\right)\), we get

$$\begin{array}{c}{p}_{r}^{BN*}=\frac{c\left({r}_{0}+1\right){\theta }^{3}+{\left[\beta +1+\left({r}_{2}+1\right)c\right]\theta }^{2}-\left[\left({r}_{0}+1\right)c+2\beta t+2\right]\theta -3\left(\beta +1\right)-\left({r}_{2}+1\right)c}{4\left({\theta }^{2}-1\right)}\end{array}$$
(A.36)

Substituting \({p}_{m}^{BN}\), \({w}^{BN}\), and \({p}_{r}^{BN}\) into \(E\left({\pi }_{r}^{BN}\right)\), \(E\left({\pi }_{m}^{BN}\right)\), and \(E\left({\pi }_{f}^{BN}\right)\), we obtain

$$\begin{array}{c}{E\left({\pi }_{r}^{BN}\right)}^{*}=\frac{{\left[c\left({r}_{0}+1\right)\theta -\left({r}_{2}+1\right)c+\beta +1\right]}^{2}{\left(\theta +1\right)}^{2}{\left(\theta -1\right)}^{2}}{16{\left({\theta }^{2}-1\right)}^{2}}\end{array}$$
(A.37)
$$\begin{array}{c}{E\left({\pi }_{m}^{BN}\right)}^{*}=\frac{{A}_{3}{c}^{2}-2c{B}_{3}-{C}_{3}{\theta }^{2}-{D}_{3}+4{r}_{2}\rho -3+4\rho +8G}{8\left({\theta }^{2}-1\right)}\end{array}$$
(A.38)
$$\begin{array}{c}{E\left({\pi }_{f}^{BN}\right)}^{*}=\frac{{r}_{0}{c}^{2}\left[\left({\theta }^{2}-2\right){r}_{0}-2+{\theta }^{2}+\left({r}_{2}+1\right)\theta \right]+{r}_{0}c\left[\left(\beta +1\right)\theta +2\beta t+2\right]}{4}+G\end{array}$$
(A.39)
$$ \begin{gathered} \left( {A_{3} = \left( {\theta + 1} \right)\left( {\theta - 1} \right)\left[ { - \left( {r_{0} + 1} \right)^{2} \theta^{2} - 2\theta \left( {r_{0} + 1} \right)\left( {r_{2} + 1} \right) + r_{2}^{2} + 2r_{0}^{2} + 2r_{2} + 4r_{0} + 3} \right];} \right. \hfill \\ B_{3} = \left( {\theta + 1} \right)\left( {\theta - 1} \right)\left[ {\left( {r_{0} + 1} \right)\left( {\beta + 1} \right)\theta + \beta \left( {2r_{0} t + 2t + r_{2} + 1} \right) + \left( {r_{2} + 2r_{0} + 3} \right)} \right]; \hfill \\ \left. {C_{3} = \beta^{2} + 4r_{2} \rho + 2\beta + 4\rho + 1 + 8G;\;D_{3} = 4\theta \left( {\beta + 1} \right)\left( {\beta t + 1} \right) + \beta^{2} \left( {2t^{2} + 1} \right) + 4\beta \left( {t + \frac{1}{2}} \right)} \right) \hfill \\ \end{gathered} $$

Proof of Corollary 4

  1. (1)

    \(\frac{\partial {w}^{BN*}}{\partial t}=-\frac{\theta \beta }{2\left({\theta }^{2}-1\right)}>0\)

  2. (2)

    \(\frac{\partial {p}_{m}^{BN*}}{\partial t}=-\frac{\beta }{2\left({\theta }^{2}-1\right)}>0\)

  3. (3)

    \(\frac{\partial {p}_{r}^{BN*}}{\partial t}=-\frac{\theta \beta }{2\left({\theta }^{2}-1\right)}>0\)

  4. (4)

    \(\frac{\partial {E\left({\pi }_{r}^{BN}\right)}^{*}}{\partial t}=0\)

  5. (5)

    \(\frac{\partial E{\left({\pi }_{m}^{BN}\right)}^{*}}{\partial t}=-\frac{\beta \left[c\left({r}_{0}+1\right){\theta }^{2}+\left(\beta +1\right)\theta -c\left({r}_{0}+1\right)+\beta t+1\right]}{2\left({\theta }^{2}-1\right)}>0\)

  6. (6)

    \(\frac{\partial {{E( \pi }_{f}^{BN})}^{*}}{\partial t}=\frac{{r}_{0}c\beta }{2}>0\)

Proof of Proposition 4

Under the model BB, the expected profits of supply chain members are

$$\begin{array}{c}E\left({\pi }_{r}^{BB}\right)=\left({p}_{r}^{BB}-{w}^{BB}-b\right)\left(1+\frac{h}{2}-{p}_{r}^{BB}+\theta {p}_{m}^{BB}+\beta \right)\end{array}$$
(A.40)
$$\begin{array}{c}E\left({\pi }_{m}^{BB}\right)=\left({w}^{BB}-c-b\right)\left(1+\frac{h}{2}-{p}_{r}^{BB}+\theta {p}_{m}^{BB}+\beta \right)+\left({p}_{m}^{BB}-c-2b\right)\left(1+\frac{h}{2}-{p}_{m}^{BB}+\theta {p}_{r}^{BB}+\beta t\right)-\frac{1}{2}\rho \\ -{r}_{0}\left(c+2b\right)\left(1+\frac{h}{2}-{p}_{m}^{BB}+\theta {p}_{r}^{BB}+\beta t\right)-{r}_{2}\left[\left(c+b\right)\left(1+\frac{h}{2}-{p}_{r}^{BB}+\theta {p}_{m}^{BB}+\beta \right)+\frac{1}{2}\rho \right]-G\end{array}$$
(A.41)
$$\begin{array}{c}E\left({\pi }_{f}^{BB}\right)= G+ {r}_{0}\left(c+2b\right)\left(1+\frac{h}{2}-{p}_{m}^{BB}+\theta {p}_{r}^{BB}+\beta t\right)\end{array}$$
(A.42)

In the EB financing strategy, when using blockchain, we obtain \(\frac{\partial {E\left({\pi }_{r}^{BB}\right)}^{2}}{\partial {{p}_{r}^{BB}}^{2}}=-2<0\), so \(E\left({\pi }_{r}^{BB}\right)\) is a strictly concave function concerning \({p}_{r}^{BB}\). According to the inverse inductive solution method, let \(\frac{\partial E\left({\pi }_{r}^{BB}\right)}{\partial {p}_{r}^{BB}}=0\), we can obtain the optimal pricing for the retail channel \({p}_{r}^{BB}\) concerning \({w}^{BB}\) and \({p}_{m}^{BB}\) as follows:

$$\begin{array}{c}{p}_{r}^{BB}\left({w}^{BB},{p}_{m}^{BB}\right)=\frac{\beta +\theta {p}_{m}^{BB}+1+{w}^{BB}+b}{2}+\frac{h}{4}\end{array}$$
(A.43)

Place \({p}_{r}^{BB}\left({w}^{BB},{p}_{m}^{BB}\right)\) substitute into \(E\left({\pi }_{m}^{BB}\right)\), we will obtain the expression of \(E\left({\pi }_{m}^{BB}\right)\) concerning \({w}^{BB}\) and \({p}_{m}^{BB}\). The Hessian matrix of \(E\left({\pi }_{m}^{BB}\right)\) concerning \({w}^{BB}\) and \({p}_{m}^{BB}\) is obtained by calculating as follows:

$$\begin{array}{c}{H}_{E\left({\pi }_{m}^{BB}\right)\left({w}^{BB},{p}_{m}^{BB}\right)}=\left[\begin{array}{cc}{\theta }^{2}-2& \theta \\ \theta & -1\end{array}\right]\end{array}$$
(A.44)

Due to\(0<\theta <1\),\(\frac{\partial {E\left({\pi }_{m}^{BB}\right)}^{2}}{\partial {{p}_{m}^{BB}}^{2}}={\theta }^{2}-2<0\), and \({H}_{E\left({\pi }_{m}^{BB}\right)\left({w}^{BB},{p}_{m}^{BB}\right)}=2-2{\theta }^{2}>0\), therefore \({H}_{E\left({\pi }_{m}^{BB}\right)\left({w}^{BB},{p}_{m}^{BB}\right)}\) is a negative definite matrix. \(E\left({\pi }_{m}^{BB}\right)\) is a strictly combinatorial concave function on \({w}^{BB}\) and\({p}_{m}^{BB}\).

Let \(\frac{\partial E\left({\pi }_{m}^{BB}\right)}{\partial {p}_{m}^{BB}}=0\), and \(\frac{\partial E\left({\pi }_{m}^{BB}\right)}{\partial {w}^{BB}}=0\),we get

$$\begin{array}{c}{p}_{m}^{BB}\left({w}^{BB}\right)=\frac{4\left({r}_{0}+1\right)\left(\frac{c}{2}+b\right){\theta }^{2}-\left[\left(2{r}_{2}+2\right)c+2{r}_{2}b-\left(2\beta +2+h+4{w}^{BB}\right)\right]\theta -8\left({r}_{0}+1\right)b-4\left({r}_{0}+1\right)c-4\left(\beta t+1\right)-2h}{4\left({\theta }^{2}-2\right)}\end{array}$$
(A.45)
$$\begin{array}{c}{w}^{BB}\left({p}_{m}^{BB}\right)=\frac{1+c-2\theta b-c\theta -2{r}_{0}\theta b-{r}_{0}c\theta +{r}_{2}c+2\theta {p}_{m}^{BB}+\beta +{r}_{2}b}{2}+\frac{h}{4}\end{array}$$
(A.46)

Substituting \({p}_{m}^{BB}\left({w}^{BB}\right)\) and \({w}^{BB}\left({p}_{m}^{BB}\right)\) into each other to solve for

$$\begin{array}{c}{p}_{m}^{BB*}=\frac{\left[4\left({r}_{0}+1\right)\left(\frac{c}{2}+b\right)\right]{\theta }^{2}-\left(2\beta +2+h\right)\theta -4\left({r}_{0}+1\right)b-2\left({r}_{0}+1\right)c-2\left(\beta t+1\right)-h}{4\left({\theta }^{2}-1\right)}\end{array}$$
(A.47)
$$\begin{array}{c}{w}^{BB*}=\frac{\left[\left(2b+2c\right){r}_{2}+2c\right]{\theta }^{2}-\left(2\beta t+2+h\right)\theta -2\left(b+c\right){r}_{2}-2\left(1+c\right)-2\beta -h}{4\left({\theta }^{2}-1\right)}\end{array}$$
(A.48)

Substituting \({p}_{m}^{BB}\) and \({w}^{BB}\) into \({p}_{r}^{BB}\left({w}^{BB},{p}_{m}^{BB}\right)\) obtains

$$\begin{array}{c}{p}_{r}^{BB*}=\frac{{A}_{4}{\theta }^{2}-{B}_{4}\theta -6\beta -6-\left(2{r}_{2}+4\right)b-\left(2{r}_{2}+2\right)c-3h}{8\left({\theta }^{2}-1\right)}\end{array}$$
(A.49)

Substituting \({p}_{m}^{BB}\), \({w}^{BB}\), and \({p}_{r}^{BB}\) into \(E\left({\pi }_{r}^{BB}\right)\), \(E\left({\pi }_{m}^{BB}\right)\), and \(E\left({\pi }_{f}^{BB}\right)\), we obtain

$$\begin{array}{c}{E\left({\pi }_{r}^{BB}\right)}^{*}=\frac{{\left[2\left({r}_{0}+1\right)\left(\frac{c}{2}+b\right)\theta -b\left({r}_{2}+2\right)-c\left({r}_{2}+1\right)+\beta +1+\frac{h}{2}\right]}^{2}}{16}\end{array}$$
(A.50)
$$\begin{array}{c}{E\left({\pi }_{m}^{BB}\right)}^{*}=\frac{{C}_{4}{\theta }^{4}+{D}_{4}{\theta }^{3}+{E}_{4}{\theta }^{2}+{F}_{4}\theta +{H}_{4}{b}^{2}+{I}_{4}b+{J}_{4}{c}^{2}+{K}_{4}c+{L}_{4}}{32\left({\theta }^{2}-1\right)}\end{array}$$
(A.51)
$$\begin{array}{c}{E\left({\pi }_{f}^{BB}\right)}^{*}=\left({\theta }^{2}-2\right) {\left(\frac{c}{2}+b\right)}^{2}{{r}_{0}}^{2}+\left(\frac{c}{2}+b\right){M}_{4}{r}_{0}+G\end{array}$$
(A.52)
$$ \begin{aligned} & (A_{4} = [2(r_{0} + 1)(c + 2b)]\theta^{3} + [2\beta + 2 + (2r_{2} + 4)b + (2r_{2} + 2)c + h];\\ &B_{4} = 4(r_{0} + 1)b + 2(r_{0} + 1)c + 4\beta t + 4 + 2h;\\ &C_{4} = - 8(r_{0} + 1)^{2} (c + 2b)^{2} ;\\ &D_{4} = - 8(r_{0} + 1)(c + 2b)\left[ {(r_{2} + 2)b + (r_{2} + 1)c + \beta + 1 + \frac{h}{2}} \right]; \\ & E_{4} = \left( {48r_{0}^{2} + 4r_{2}^{2} + 96r_{0} + 16r_{2} + 64} \right)b^{2} + \left[ {\left( {48r_{0}^{2} + 8r_{2}^{2} + 96r_{0} + 24r_{2} + 64} \right)c} \right. \\ & \left.\qquad { - \left( {32\beta t + 32 + 16h} \right)r_{0} - \left( {8\beta + 8 + 4h} \right)r_{2} - \left( {32t + 16} \right)\beta - 48 - 24h} \right]b\\ &\qquad + (12r_{0}^{2} + 4r_{2}^{2} + 24r_{0} + 8r_{2} + 16)c^{2} + [( - 16\beta t - 16 - 8h)r_{0}\\ &\qquad - (8\beta + 8 + 4h)r_{2} + ( - 16t - 8)\beta - 24 - 12h]c - 16r_{2} \rho - 4\beta^{2}\\ &\qquad - 8\left( {1 + \frac{h}{2}} \right)\beta - 16\rho - 4 - 4h - h^{2} - 32G; \\ &F_{4} = 16\left( {r_{0} + 1} \right)\left( {r_{2} + 2} \right)b^{2} + 24\left( {r_{0} + 1} \right)b\left[ {\left( {r_{2} + \frac{4}{3}} \right)c + \frac{2\beta }{3} + \frac{2}{3} + \frac{h}{3}} \right]\\ &\qquad + 8\left( {r_{0} + 1} \right)\left( {r_{2} + 2} \right)c^{2} + 8c\left( {r_{0} + 1} \right)\left( {\beta + 1 + \frac{h}{2}} \right) - 16\left( {\beta t + 1 + \frac{h}{2}} \right)\left( {\beta + 1 + \frac{h}{2}} \right); \\ & H_{4} = - 32r_{0}^{2} - 4r_{2}^{2} - 64r_{0} - 16r_{2} - 48;\\ &I_{4} = \left( { - 32r_{0}^{2} - 8r_{2}^{2} - 64r_{0} - 24r_{2} - 48} \right)c + \left( {32\beta t + 32 + 16h} \right)r_{0} + \left( {8\beta + 8 + 4h} \right)r_{2}\\ &\qquad + \left( {32t + 16} \right)\beta + 48 + 24h; \\ & J_{4} = - 8r_{0}^{2} - 4r_{2}^{2} - 16r_{0} - 8r_{2} - 12;\\ &K_{4} = \left( {16\beta t + 16 + 8h} \right)r_{0} + \left( {8\beta + 8 + 4h} \right)r_{2} + \left( {16t + 8} \right)\beta + 24 + 12h; \\ & L_{4} = - 16r_{2} \rho - \left( { - 8t^{2} - 4} \right)\beta^{2} - 16\beta \left( {t + \frac{1}{2}} \right)\left( {1 + \frac{h}{2}} \right) + 16\rho - 12 - 12h - 3h^{2} + 32G;\\ &M_{4} = \left( {\frac{c}{2} + b} \right)\theta^{2} + \left[ {\left( {\frac{{r_{2} }}{2} + 1} \right)b + \left( {\frac{{r_{2} }}{2} + \frac{1}{2}} \right)c + \frac{\beta }{2} + \frac{1}{2} + \frac{h}{2}} \right]\theta\\ &\qquad + \beta t + 1 - 2b - c + \frac{h}{2} \\ \end{aligned} $$

Proof of Corollary 5

  1. (1)

    \(\frac{\partial {w}^{BB*}}{\partial t}=-\frac{\theta \beta }{2\left({\theta }^{2}-1\right)}>0\)

  2. (2)

    \(\frac{\partial {p}_{m}^{BB*}}{\partial t}=-\frac{\beta }{2\left({\theta }^{2}-1\right)}>0\)

  3. (3)

    \(\frac{\partial {p}_{r}^{BB*}}{\partial t}=-\frac{\theta \beta }{2\left({\theta }^{2}-1\right)}>0\)

  4. (4)

    \(\frac{\partial {E\left({\pi }_{r}^{BB}\right)}^{*}}{\partial t}=0\)

  5. (5)

    \(\frac{\partial {E\left({\pi }_{m}^{BB}\right)}^{*}}{\partial t}=-\frac{2\beta \left[2\left({r}_{0}+1\right)\left(\frac{c}{2}+b\right){\theta }^{2}+\left(\beta +1+\frac{h}{2}\right)\theta -\left(2b+c\right)\left({r}_{0}+1\right)+\beta t+1+\frac{h}{2}\right]}{4{\theta }^{2}-4}>0\)

  6. (6)

    \(\frac{\partial {E\left({\pi }_{f}^{BB}\right)}^{*}}{\partial t}=\left(\frac{c}{2}+b\right)\beta {r}_{0}>0\)

Proof of Corollary 6

  1. (1)

    \(\frac{\partial {w}^{BB*}}{\partial b}=\frac{{r}_{2}}{2}>0\)

  2. (2)

    \(\frac{\partial {p}_{m}^{BB*}}{\partial b}={r}_{0}+1>0\)

  3. (3)

    \(\frac{\partial {p}_{r}^{BB*}}{\partial b}=\frac{2\left(1+{r}_{0}\right)\theta +{r}_{2}+2}{4}>0\)

    When \(0<b<{b}_{4}\), \(\frac{\partial {E\left({\pi }_{r}^{BB}\right)}^{*}}{\partial b}<0\); \(b>{b}_{4}\), \(\frac{\partial {E\left({\pi }_{r}^{BB}\right)}^{*}}{\partial b}>0\);

    When \(0<b<{b}_{5}\), \(\frac{\partial {E\left({\pi }_{m}^{BB}\right)}^{*}}{\partial b}<0\); \(b>{b}_{5}\), \(\frac{\partial {E\left({\pi }_{m}^{BB}\right)}^{*}}{\partial b}>0\);

    When \(0<b<{b}_{6}\), \(\frac{\partial E{\left({\pi }_{f}^{BB}\right)}^{*}}{\partial b}>0\); \(b>{b}_{6}\), \(\frac{\partial E{\left({\pi }_{f}^{BB}\right)}^{*}}{\partial b}<0.\)

    (\({b}_{4}=\frac{2\theta \left({r}_{0}+1\right)c-\left(2{r}_{2}+2\right)c+2\beta +2+h}{4\left(1-\theta -{r}_{0}\theta \right)+2{r}_{0}}\); \({b}_{6}=-\frac{4c\left({r}_{0}+1\right){\theta }^{2}-\left[2\beta +2+\left(3{r}_{2}+4\right)c+h\right]\theta +\left(8{r}_{0}+8\right)c-4\beta t-4-2h}{8\left({r}_{0}{\theta }^{2}+{\theta }^{2}\right)+\left(4{r}_{2}+8\right)\theta -16{r}_{0}-16}\);

    \({b}_{5}=\frac{-4c\left({r}_{0}+1\right){\theta }^{2}-\left[4\beta +4+\left(6{r}_{2}+8\right)c+2h\right]\left({r}_{0}+1\right)\theta +8{{r}_{0}}^{2}c-\left(8\beta t+8-16c+4h\right){r}_{0}+\left(2{{r}_{2}}^{2}+6{r}_{2}+12\right)c-\left(2\beta +2+h\right){r}_{2}-\left(8t+4\right)\beta -12-6h}{8{\left({r}_{0}+1\right)}^{2}{\theta }^{2}+\left(8{r}_{0}+8\right)\left({r}_{2}+2\right)\theta -16{{r}_{0}}^{2}-2{{r}_{2}}^{2}-32{r}_{0}-8{r}_{2}-24}\))

Proof of Corollary 7

The results of the manufacturer's optimal wholesale price comparison are as follows:

  1. (1)

    When using the EP financing strategy \({w}^{PB*}-{w}^{PN*}=\frac{4b{r}_{1}\left(\theta -1\right)-h}{4\theta -4}>0\).

  2. (2)

    When using the EB financing strategy \({w}^{BB*}-{w}^{BN*}=\frac{2b{r}_{2}\left(\theta -1\right)-h}{4\theta -4}>0\).

  3. (3)

    When blockchain is not used \({w}^{PN*}-{w}^{BN*}=\frac{\left(2{r}_{1}-{r}_{2}\right)c}{2}\), when using the blockchain\({w}^{PB*}-{w}^{BB*}=\left(b+c\right)\left({r}_{1}-\frac{{r}_{2}}{2}\right)\); therefore, when\({r}_{1}>\frac{{r}_{2}}{2}\),\({w}^{PN*}>{w}^{BN*}\),\({w}^{PB*}>{w}^{BB*}\); when\({r}_{1}<\frac{{r}_{2}}{2}\),\({w}^{BN*}>{w}^{PN*}\),\({w}^{BB*}>{w}^{PB*}\). Since\({w}^{BB*}-{w}^{PN*}=\frac{4\left(\theta -1\right)\left(b+c\right){r}_{2}-2c\theta {r}_{1}+2c{r}_{1}-h}{4\theta -4}>0\), so when\({r}_{1}>\frac{{r}_{2}}{2}\),\({w}^{PB*}>{w}^{BB*}>{w}^{PN*}>{w}^{BN*}\). Since\({w}^{PB*}-{w}^{BN*}=\frac{2\left(\theta -1\right)\left(b+c\right){r}_{2}-4c\theta {r}_{1}+4c{r}_{1}-h}{4\theta -4}>0\), so when\({r}_{1}>\frac{{r}_{2}}{2}\),\({w}^{BB*}>{w}^{PB*}>{w}^{BN*}>{w}^{PN*}\).

Proof of Corollary 8

The results of the comparison of optimal pricing for products in the retail channel are as follows:

  1. (1)

    When using the EP financing strategy \({p}_{r}^{PB*}-{p}_{r}^{PN*}=\frac{4b{\theta }^{2}\left({r}_{0}+1\right)-\left(4b{r}_{0}+h\right)\theta -4b-3h}{8\theta -8}>0\)

  2. (2)

    When using the EB financing strategy \({p}_{r}^{BB*}-{p}_{r}^{BN*}=\frac{4b{\theta }^{2}\left({r}_{0}+1\right)+\left[\left(-4{r}_{0}+2{r}_{2}\right)b+h\right]\theta -\left(2{r}_{2}+4\right)b-3h}{8\theta -8}>0\)

  3. (3)

    When blockchain is not used \({p}_{r}^{PN*}-{p}_{r}^{BN*}=-\frac{c{r}_{2}}{4}<0\), when using the blockchain \({p}_{r}^{PB*}- {p}_{r}^{BB*}=-\frac{(b+c){r}_{2}}{4}<0\);\( {p}_{r}^{PB*}-{p}_{r}^{BN*}=\frac{4b\left({r}_{0}+1\right){\theta }^{2}-\left(4b{r}_{0}+2c{r}_{2}-h\right)\theta +2c{r}_{2}-4b-3h}{8\theta -8}>0\), so \({p}_{r}^{BB*}>{p}_{r}^{PB*}>{p}_{r}^{BN*}>{p}_{r}^{PN*}\).

Proof of Corollary 9

The results of the comparison of the optimal pricing of products in the online channel are as follows:

  1. (1)

    When using the EP financing strategy \({p}_{m}^{PB*}-{p}_{m}^{PN*}=\frac{4b\left(\theta -1\right)\left({r}_{0}+1\right)-h}{4\theta -4}>0\).

  2. (2)

    When using the EB financing strategy \({p}_{m}^{BB*}-{p}_{m}^{BN*}=\frac{4b\left(\theta -1\right)\left({r}_{0}+1\right)-h}{4\theta -4}>0\).

  3. (3)

    \({p}_{m}^{PN*}-{p}_{m}^{BN*}=0\), and \({p}_{m}^{PB*}-{p}_{m}^{BB*}=0\), therefore \({p}_{m}^{PB*}={p}_{m}^{BB*}>{p}_{m}^{PN*}={p}_{m}^{BN*}\).

Appendix B

The optimal pricing and the optimal expected profits under the model KPN are in Table 7.

Table 7 The optimal solutions of model KPN

Where \({A}_{5}=\left(3{{r}_{0}}^{2}+6{r}_{0}+4\right){c}^{2}-\left[\left(4{r}_{0}+2t+4\right)\beta +4{r}_{0}+6\right]c-{\beta }^{2}{t}^{2}-4{r}_{0}\rho -2\beta t-8G-4\rho -1\), \({B}_{5}=\left(2{r}_{0}+2\right){c}^{2}+2c\left(\beta t+1\right)\left({r}_{0}+1\right)-4\left(\beta +1\right)\left(\beta t+1\right)\), \({C}_{5}=\left(-2{{r}_{0}}^{2}-4{r}_{0}-3\right){c}^{2}+\left[\left(4{r}_{0}+2t+4\right)\beta +4{r}_{0}+6\right]c-\left({t}^{2}+2\right){\beta }^{2}-\left(2t+4\right)\beta +4{r}_{0}\rho +8G+4\rho -3\).

The optimal pricing and the optimal expected profits under the model KPB are in Table 8.

Table 8 The optimal solutions of model KPB

Where \({A}_{6}=4(2\beta t+4b+2c+h+2)(c+2b)({r}_{0}+1)\), \({B}_{6}=\left(48{{r}_{0}}^{2}+96{r}_{0}+64\right){b}^{2}+\left[\left(48{{r}_{0}}^{2}+96{r}_{0}+64\right)c-\left(16h+32\beta +32\right){r}_{0}-\left(16t+32\right)\beta -24h-48\right]b+\left(12{{r}_{0}}^{2}+24{r}_{0}+16\right){c}^{2}+\left[\left(-8h-16\beta -16\right){r}_{0}-\left(8t+16\right)\beta -12h-24\right]c-16{r}_{0}\rho -4{\beta }^{2}{t}^{2}-4t\beta \left(h+2\right)-{h}^{2}-32G-4h-16\rho -4\), \({C}_{5}=\left(32{r}_{0}+32\right){b}^{2}+8\left(2\beta t+4c+h+2\right)\left({r}_{0}+1\right)b+\left(8{r}_{0}+8\right){c}^{2}+4\left({r}_{0}+1\right)\left(2\beta t+h+2\right)c-4(2\beta +h+2)(2\beta t+h+2)\), \({D}_{5}=-\left(32{{r}_{0}}^{2}+64{r}_{0}+48\right){b}^{2}+\left[\left(32{{r}_{0}}^{2}+64{r}_{0}+48\right)c+\left(16h+32\beta +32\right){r}_{0}+\left(16t+32\right)\beta +24h+48\right]b-\left(8{{r}_{0}}^{2}+16{r}_{0}+12\right){c}^{2}+\left[\left(8h+16\beta +16\right){r}_{0}+\left(8t+16\right)\beta +12h+24\right]c+16{r}_{0}\rho -4{\beta }^{2}{t}^{2}-8{\beta }^{2}-4\beta \left(t+2\right)\left(h+2\right)-3{h}^{2}+32G-12h+16\rho -12\), \({E}_{5}={r}_{0}\big\{\left(8{\theta }^{2}+8\theta -16\right){b}^{2}+\big[\left(8{\theta }^{2}+8\theta -16\right)c+\left(4\beta t+2h+4\right)\theta +4h+8\beta +8\big]b+\left(2{\theta }^{2}+2\theta -4\right){c}^{2}+\big[\left(2\beta t+h+2\right)\theta +2h+4\beta +4\big]c+4\rho \big\}\).

The optimal pricing and the optimal expected profits under the model KBN are in Table 9.

Table 9 The optimal solutions of model KBN

Where \({A}_{7}=(1-{\theta }^{2})\left[{({r}_{0}+1)}^{2}{\theta }^{2}+2\left({r}_{0}+1\right)\left({r}_{2}+1\right)\theta -2{{r}_{0}}^{2}-{{r}_{2}}^{2}-4{r}_{0}-2{r}_{2}-3\right])\), \({B}_{7}=(1-{\theta }^{2})\left[\left(\beta t+1\right)\left({r}_{0}+1\right)\theta +\left(2{r}_{0}+2+t+{r}_{2}t\right)\beta +2{r}_{0}+{r}_{2}+3\right]\), \({C}_{7}={\beta }^{2}{t}^{2}+2\beta t+4{r}_{0}\rho +8G+4\rho +1\).

The optimal pricing and the optimal expected profits under the model KBB are in Table 10.

Table 10 The optimal solutions of model KBB

Where \({A}_{8}=(2{r}_{2}+4)b+(2{r}_{2}+2)c+2\beta t+h+2\), \({B}_{8}=(2b+c)(2{r}_{0}+2)-2h-4\beta -4\), \({C}_{8}=4(c+2b)({r}_{0}+1)[2({r}_{2}+2)b+2({r}_{2}+1)c+2\beta t+h+2]\), \({D}_{5}=(48{{r}_{0}}^{2}+4{{r}_{2}}^{2}+96{r}_{0}+16{r}_{2}+64){b}^{2}+[(48{{r}_{0}}^{2}+8{{r}_{2}}^{2}+96{r}_{0}+24{r}_{2}+64)c-(16h+32\beta +32){r}_{0}-(8t{r}_{2}+16t+32)\beta -4(h+2)({r}_{2}+6)]b+(12{{r}_{0}}^{2}+4{{r}_{2}}^{2}+24{r}_{0}+8{r}_{2}+16){c}^{2}-[(8h+16\beta +16){r}_{0}+(8t{r}_{2}+8t+16)\beta +4(h+2)({r}_{2}+3)]c-16{r}_{0}\rho -4{\beta }^{2}{t}^{2}-4\beta t(h+2)-{h}^{2}-32G-4h-16\rho -4\), \({E}_{8}=16({r}_{0}+1)({r}_{2}+2){b}^{2}+8[(3{r}_{2}+4)c+2\beta t+h+2]({r}_{0}+1)b+8({r}_{0}+1)({r}_{2}+2){c}^{2}+4({r}_{0}+1)(2\beta t+h+2)-4(2\beta t+h+2)(2\beta +h+2)\), \({F}_{8}=-(32{{r}_{0}}^{2}+4{{r}_{2}}^{2}+64{r}_{0}+16{r}_{2}+48){b}^{2}+[-(32{{r}_{0}}^{2}+8{{r}_{2}}^{2}+64{r}_{0}+24{r}_{2}+48)c+(16h+32\beta +32){r}_{0}+(8t{r}_{2}+8t+32)\beta +4(h+2)({r}_{2}+6)]b-(8{{r}_{0}}^{2}+4{{r}_{2}}^{2}+16{r}_{0}+8{r}_{2}+12){c}^{2}+[(8h+16\beta +16){r}_{0}+(8t{r}_{2}+8t+16)\beta +4(h+2)({r}_{2}+3)]c+16{r}_{0}\rho -(4{t}^{2}+8){\beta }^{2}-4\beta (h+2)(t+2)-{3h}^{2}+32G-12h+16\rho -12\), \({H}_{8}=2{(c+2b)}^{2}{\theta }^{2}+(c+2b)[2({r}_{2}+2)b+2({r}_{2}+1)c+2\beta t+h+2]-16{b}^{2}+(-16c+4h+8\beta +8)b-4{c}^{2}+(2h+4\beta +4)c+4\rho \).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Shang, R., Wei, M. et al. Optimal pricing and financing decision of dual-channel green supply chain considering product differentiation and blockchain. Ann Oper Res (2024). https://doi.org/10.1007/s10479-024-05996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-024-05996-5

Keywords

Navigation