Skip to main content
Log in

Efficient portfolios and extreme risks: a Pareto–Dirichlet approach

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper solves the mean variance skewness kurtosis (MVSK) portfolio optimization problem by introducing a general Pareto–Dirichlet method. We approximate the feasible portfolio set with a calibrated Dirichlet distribution, where a portfolio is MVSK efficient if its profile in terms of the first four moments is not dominated by any other portfolio. Compared to existing higher order portfolio optimization methods, the Pareto–Dirichlet approach cannot misclassify inefficient portfolios as efficient and produces the efficient set in a very quick way. Coupling the Pareto–Dirichlet approach with a new criterion that generalizes the Sharpe ratio, we are able to produce optimal portfolios in a quick way also. We illustrate our approach with Fama-French 30 Industry Portfolios, where we show that the optimal portfolios derived with our method are preferred to those derived with other optimization schemes by all tested classic performance measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Another avenue to extend the classic MV optimization is about mean semi-variance optimization programs. See Markowitz (1959), Markowitz et al. (1993), Ogryczak and Ruszczyński (1999), Mansini and Speranza (1999), and Estrada (2008), among others.

  2. Other related studies include Sun and Yan (2003), Ryoo (2007), Mencía and Sentana (2009), Kerstens et al. (2011a), Adcock (2014), Chen et al. (2017), and Landsman et al. (2020), for example.

  3. Briec and Kerstens (2010) and Kerstens et al. (2011a) further illustrate the application of the shortage function method in the MVS portfolio selection problem.

  4. See Jurczenko et al. (2006), Lai et al. (2006), Jurczenko and Maillet (2012), and Dokov et al. (2017).

  5. The details of industry portfolios are accessible via the following link: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_30_ind_port.html.

  6. While market implied equilibrium returns are not “true” returns, they are less subject to noise than raw returns. The adjustment shown here is simple and we use it mainly for illustrative purposes. Because adjusted return moment profiles are inputs to the Pareto–Dirichlet approach, investors can conveniently adopt any standard moment adjustment method and combine it with the Pareto–Dirichlet approach.

  7. Specifically, we follow Ingersoll et al. (2007, Equation 20) to calculate market implied risk aversion as follows:

    $$\begin{aligned} \lambda =\frac{\text {ln}(E[1+r_{mkt}+r_f])-\text {ln}(E[1+r_f])}{\text {var(ln}(1+r_{mkt}+r_f))}. \end{aligned}$$

    We see that the market implied risk aversion is negative as long as the market factor has a negative average return.

  8. More discussions of the input uncertainty for portfolio selection are provided by Harvey et al. (2008) and Michaud and Michaud (2008), among others.

  9. It takes less than one minute to produce the figure from scratch in Matlab on a 64 bits personal laptop with an i7 processor and 16GB of RAM.

  10. When employed for efficient frontier construction, the shortage function method has to be loaded with a reasonably large set of evaluated portfolios. Assume, for instance, that each dimension of the MVSK space is discretized into fifty points, thus there are \(50^4=6.25\) million starting points over the investment universe. Consider that running the shortage function optimization program for each of these starting points takes one second. The total computation time would be 1,736 h, and a more refined discretization design like 100 points per dimension requires skyrocketing computation time.

  11. An alternative formulation that could be explored in future studies can be

    $$\begin{aligned} \text {GSR}=\frac{\mu + b \cdot s }{a \cdot \sigma + c \cdot \kappa }, \end{aligned}$$

    where the preferred odd moments are at the numerator and the disliked even moments are at the denominator.

  12. Using excess asset returns or raw asset returns makes trivial difference to variance-covariance matrix and to other cross-moment matrices. Investors can easily adapt the line from the point of riskfree rate through the maximum GSR portfolio constructed with raw returns.

References

  • Adcock, C. J. (2014). Mean-variance-skewness efficient surfaces, Stein’s lemma and the multivariate extended skew-student distribution. European Journal of Operational Research, 234(2), 392–401.

    Google Scholar 

  • Amihud, Y., & Mendelson, H. (1986). Liquidity and stock returns. Financial Analysts Journal, 42(3), 43–48.

    Google Scholar 

  • Angelidis, T., & Tessaromatis, N. (2017). Global equity country allocation: An application of factor investing. Financial Analysts Journal, 73(4), 55–73.

    Google Scholar 

  • Barro, R. J. (2006). Rare disasters and asset markets in the twentieth century. Quarterly Journal of Economics, 121(3), 823–866.

    Google Scholar 

  • Black, F., & Litterman, R. B. (1991). Asset allocation: Combining investor views with market equilibrium. Journal of Fixed Income, 1(2), 7–18.

    Google Scholar 

  • Bogle, J. C. (2005). The mutual fund industry 60 years later: For better or worse? Financial Analysts Journal, 61(1), 15–24.

    Google Scholar 

  • Briec, W., & Kerstens, K. (2010). Portfolio selection in multidimensional general and partial moment space. Journal of Economic Dynamics & control, 34(4), 636–656.

    Google Scholar 

  • Briec, W., Kerstens, K., & Jokung, O. (2007). Mean-variance-skewness portfolio performance gauging: A general shortage function and dual approach. Management Science, 53(1), 135–149.

    Google Scholar 

  • Briec, W., Kerstens, K., & Van de Woestyne, I. (2013). Portfolio selection with skewness: A comparison of methods and a generalized one fund result. European Journal of Operational Research, 230(2), 412–421.

    Google Scholar 

  • Brockett, P. L., & Kahane, Y. (1992). Risk, return, skewness and preference. Management Science, 38(6), 851–866.

    Google Scholar 

  • Campbell, J. Y., Lettau, M., Malkiel, B. G., & Xu, Y. (2001). Have individual stocks become more volatile? An empirical exploration of idiosyncratic risk. Journal of Finance, 56(1), 1–43.

    Google Scholar 

  • Černỳ, A. (2003). Generalised Sharpe ratios and asset pricing in incomplete markets. Review of Finance, 7(2), 191–233.

    Google Scholar 

  • Chabi-Yo, F. (2012). Pricing kernels with stochastic skewness and volatility risk. Management Science, 58(3), 624–640.

    Google Scholar 

  • Chen, J., Wu, Q., Zhang, L., & Wu, P. (2017). Multi-objective mean-variance-skewness model for nonconvex and stochastic optimal power flow considering wind power and load uncertainties. European Journal of Operational Research, 263(2), 719–732.

    Google Scholar 

  • Chotikapanich, D., & Griffiths, W. E. (2002). Estimating Lorenz curves using a Dirichlet distribution. Journal of Business & Economic Statistics, 20(2), 290–295.

    Google Scholar 

  • Chunhachinda, P., Dandapani, K., Hamid, S., & Prakash, A. J. (1997). Portfolio selection and skewness: Evidence from international stock markets. Journal of Banking & Finance, 21(2), 143–167.

    Google Scholar 

  • Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1(2), 223–236.

    Google Scholar 

  • Cvitanić, J., Polimenis, V., & Zapatero, F. (2008). Optimal portfolio allocation with higher moments. Annals of Finance, 4(1), 1–28.

    Google Scholar 

  • Dahlquist, M., & Harvey, C. R. (2001). Global tactical asset allocation. Emerging Markets Quarterly, 6–14.

  • de Athayde, G. M., & Flôres, R. G. (2004). Finding a maximum skewness portfolio—A general solution to three-moments portfolio choice. Journal of Economic Dynamics & Control, 28(7), 1335–1352.

    Google Scholar 

  • Dokov, S., Morton, D. P., & Popova, I. (2017). Mean-variance-skewness-kurtosis efficiency of portfolios computed via moment-based bounds. In 2017 International conference on information science and communications technologies (ICISCT) (pp. 1–5). IEEE.

  • Duan, J.-C., & Zhang, W. (2014). Forward-looking market risk premium. Management Science, 60(2), 521–538.

    Google Scholar 

  • Eeckhoudt, L., & Schlesinger, H. (2006). Putting risk in its proper place. American Economic Review, 96(1), 280–289.

    Google Scholar 

  • Estrada, J. (2008). Mean-semivariance optimization: A heuristic approach. Journal of Applied Finance, 18, 1.

    Google Scholar 

  • Giacometti, R., Bertocchi, M., Rachev, S. T., & Fabozzi, F. J. (2007). Stable distributions in the Black–Litterman approach to asset allocation. Quantitative Finance, 7(4), 423–433.

    Google Scholar 

  • Goll, T., & Kallsen, J. (2000). Optimal portfolios for logarithmic utility. Stochastic Processes and Their Applications, 89(1), 31–48.

    Google Scholar 

  • Gotoh, J.-Y., & Konno, H. (2000). Third degree stochastic dominance and mean-risk analysis. Management Science, 46(2), 289–301.

    Google Scholar 

  • Hakansson, N. H. (1975). On optimal myopic portfolio policies, with and without serial correlation of yields. In Stochastic optimization models in finance (pp. 401–411). Elsevier.

  • Harvey, C. R., Liechty, J., & Liechty, M. W. (2008). Bayes versus resampling: A rematch. Journal of Investment Management, 6(1), 1–17.

    Google Scholar 

  • Harvey, C. R., Liechty, J. C., Liechty, M. W., & Müller, P. (2010). Portfolio selection with higher moments. Quantitative Finance, 10(5), 469–485.

    Google Scholar 

  • Harvey, C. R., & Siddique, A. (2000). Conditional skewness in asset pricing tests. Journal of Finance, 55(3), 1263–1295.

    Google Scholar 

  • Hong, H., Torous, W., & Valkanov, R. (2007). Do industries lead stock markets? Journal of Financial Economics, 83(2), 367–396.

    Google Scholar 

  • Idzorek, T. M. (2011). A step-by-step guide to the Black–Litterman model. In S. Satchell (Ed.), Forecasting expected returns in the financial markets (pp. 17–38). Academic Press. chap. 2.

    Google Scholar 

  • Ingersoll, J., Spiegel, M., Goetzmann, W., & Welch, I. (2007). Portfolio performance manipulation and manipulation-proof performance measures. Review of Financial Studies, 20(5), 1503–1546.

    Google Scholar 

  • Jagannathan, R., & Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps. Journal of Finance, 58(4), 1651–1683.

    Google Scholar 

  • Jobson, J. D., & Korkie, B. M. (1981). Performance hypothesis testing with the Sharpe and Treynor measures. Journal of Finance, 36(4), 889–908.

    Google Scholar 

  • Jondeau, E., & Rockinger, M. (2006). Optimal portfolio allocation under higher moments. European Financial Management, 12(1), 29–55.

    Google Scholar 

  • Joro, T., & Na, P. (2006). Portfolio performance evaluation in a mean-variance-skewness framework. European Journal of Operational Research, 175(1), 446–461.

    Google Scholar 

  • Jurczenko, E., & Maillet, B. (2012). The four-moment capital asset pricing model: Between asset pricing and asset allocation. Multi-moment Asset Allocation and Pricing Models, 113–163.

  • Jurczenko, E., Maillet, B., & Merlin, P. (2006). Hedge fund portfolio selection with higher-order moments: A nonparametric mean-variance-skewness-kurtosis efficient frontier. In E. Jurczenko & B. Maillet (Eds.), Multi-moment asset allocation and pricing models (pp. 51–66). Wiley. chap. 3.

    Google Scholar 

  • Kadan, O., & Liu, F. (2014). Performance evaluation with high moments and disaster risk. Journal of Financial Economics, 113(1), 131–155.

    Google Scholar 

  • Kane, A. (1982). Skewness preference and portfolio choice. Journal of Financial and Quantitative Analysis, 17(1), 15–25.

    Google Scholar 

  • Kerstens, K., Mounir, A., & Van de Woestyne, I. (2011). Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function. European Journal of Operational Research, 210(1), 81–94.

    Google Scholar 

  • Kerstens, K., Mounir, A., & Van de Woestyne, I. (2011). Non-parametric frontier estimates of mutual fund performance using C- and L-moments: Some specification tests. Journal of Banking & Finance, 35(5), 1190–1201.

    Google Scholar 

  • Konno, H., & Suzuki, K.-I. (1995). A mean-variance-skewness portfolio optimization model. Journal of the Operations Research Society of Japan, 38(2), 173–187.

    Google Scholar 

  • Krishnan, C., Petkova, R., & Ritchken, P. (2009). Correlation risk. Journal of Empirical Finance, 16(3), 353–367.

    Google Scholar 

  • Lai, K. K., Yu, L., & Wang, S. (2006). Mean-variance-skewness-kurtosis-based portfolio optimization. In First international multi-symposiums on computer and computational sciences (IMSCCS’06) (Vol. 2, pp. 292–297). IEEE.

  • Lai, T.-Y. (1991). Portfolio selection with skewness: A multiple-objective approach. Review of Quantitative Finance and Accounting, 1(3), 293.

    Google Scholar 

  • Landsman, Z., Makov, U., & Shushi, T. (2020). Analytic solution to the portfolio optimization problem in a mean-variance-skewness model. European Journal of Finance, 26(2–3), 165–178.

    Google Scholar 

  • Ledoit, O., & Wolf, M. (2008). Robust performance hypothesis testing with the Sharpe ratio. Journal of Empirical Finance, 15(5), 850–859.

    Google Scholar 

  • León, Á., Rubio, G., & Serna, G. (2005). Autoregresive conditional volatility, skewness and kurtosis. Quarterly Review of Economics and Finance, 45(4–5), 599–618.

    Google Scholar 

  • Li, X., Qin, Z., & Kar, S. (2010). Mean-variance-skewness model for portfolio selection with fuzzy returns. European Journal of Operational Research, 202(1), 239–247.

    Google Scholar 

  • Lustig, H., & Verdelhan, A. (2012). Business cycle variation in the risk-return trade-off. Journal of Monetary Economics, 59, S35–S49.

    Google Scholar 

  • Maillard, D. (2011). Dynamic versus static asset allocation: From theory (halfway) to practice. Available at SSRN 1942901.

  • Mansini, R., & Speranza, M. G. (1999). Heuristic algorithms for the portfolio selection problem with minimum transaction lots. European Journal of Operational Research, 114(2), 219–233.

    Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. Wiley.

    Google Scholar 

  • Markowitz, H. (2014). Mean-variance approximations to expected utility. European Journal of Operational Research, 234(2), 346–355.

    Google Scholar 

  • Markowitz, H., Todd, P., Xu, G., & Yamane, Y. (1993). Computation of mean-semivariance efficient sets by the critical line algorithm. Annals of Operations Research, 45(1), 307–317.

    Google Scholar 

  • Martellini, L., & Ziemann, V. (2007). Extending Black–Litterman analysis beyond the mean-variance framework. Journal of Portfolio Management, 33(4), 33–44.

    Google Scholar 

  • Martellini, L., & Ziemann, V. (2009). Improved estimates of higher-order comoments and implications for portfolio selection. Review of Financial Studies, 23(4), 1467–1502.

    Google Scholar 

  • Mencía, J., & Sentana, E. (2009). Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation. Journal of Econometrics, 153(2), 105–121.

    Google Scholar 

  • Michaud, R. O., & Michaud, R. (2008). Discussion on article by Campbell R. Harvey, John C. Liechty and Merill W. Liechty, Bayes versus Resampling: A Rematch (2008, volume 6 number 1). Journal of Investment Management, 6(3), 1–2.

    Google Scholar 

  • Mitton, T., & Vorkink, K. (2007). Equilibrium under diversification and the preference for skewness. Review of Financial Studies, 20(4), 1255–1288.

    Google Scholar 

  • Moreira, A., & Muir, T. (2017). Volatility-managed portfolios. Journal of Finance, 72(4), 1611–1644.

    Google Scholar 

  • Ogryczak, W., & Ruszczyński, A. (1999). From stochastic dominance to mean-risk models: Semi deviations as risk measures. European Journal of Operational Research, 116(1), 33–50.

    Google Scholar 

  • Page, S., & Panariello, R. A. (2018). When diversification fails. Financial Analysts Journal, 74(3), 19–32.

    Google Scholar 

  • Ruszczynski, A., & Vanderbei, R. J. (2003). Frontiers of stochastically nondominated portfolios. Econometrica, 71(4), 1287–1297.

    Google Scholar 

  • Ryoo, H. S. (2007). A compact mean-variance-skewness model for large-scale portfolio optimization and its application to the NYSE market. Journal of the Operational Research Society, 58(4), 505–515.

    Google Scholar 

  • Scott, R. C., & Horvath, P. A. (1980). On the direction of preference for moments of higher order than the variance. Journal of Finance, 35(4), 915–919.

    Google Scholar 

  • Sun, Q., & Yan, Y. (2003). Skewness persistence with optimal portfolio selection. Journal of Banking & Finance, 27(6), 1111–1121.

    Google Scholar 

  • Tversky, A., & Kahneman, D. (1986). Rational choice and the framing of decisions. Journal of Business, 59(4/2), S251–S278.

    Google Scholar 

  • Yanou, G. (2013). Extension of the random matrix theory to the L-moments for portfolio selection. Quantitative Finance, 13(10), 1653–1673.

    Google Scholar 

  • Zakamouline, V., & Koekebakker, S. (2009). Portfolio performance evaluation with generalized Sharpe ratios: Beyond the mean and variance. Journal of Banking & Finance, 33(7), 1242–1254.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Le Courtois.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Courtois, O., Xu, X. Efficient portfolios and extreme risks: a Pareto–Dirichlet approach. Ann Oper Res 335, 261–292 (2024). https://doi.org/10.1007/s10479-023-05507-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-023-05507-y

Keywords

Navigation