Skip to main content

Advertisement

Log in

Improvement strategies of battery driving range in an electric vehicle supply chain considering subsidy threshold and cost misreporting

  • S.I.: Information-Transparent Supply Chains
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper investigates a two-stage supply chain consisting of a battery supplier (BS) and an electric vehicle manufacturer (EVM). Considering consumers’ sensitivity to the battery driving range, the BS can improve the driving range level by investing, and obtain subsidies if the driving range level exceeds the subsidy threshold set by the government. Meanwhile, the BS may misreport his private information of the investment cost to the EVM. We mainly examine the effect of cost information misreporting and how the BS determines the optimal improvement strategy when the subsidy threshold increases. Firstly, a low (high) subsidy threshold makes the BS raise the driving range level above (below) the subsidy threshold; when the subsidy threshold is moderately raised, the choice of the improvement strategy is controlled by both the degree of raising the subsidy threshold and the technical upper limit. Secondly, participants may show different preferences for the improvement strategy under certain conditions. Finally, cost information misreporting brings adverse effects to participants and reduces the driving range level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable.

Notes

  1. http://www.ev-volumes.com/news/global-ev-sales-for-2018/.

  2. http://www.ev-volumes.com/news/81958/.

  3. https://www.d1ev.com/kol/93260.

  4. https://www.d1ev.com/news/qiye/38098.

  5. https://www.d1ev.com/news/jishu/33257.

  6. https://www.d1ev.com/kol/111058.

  7. https://baijiahao.baidu.com/s?id=1630234570037358869&wfr=spider&for=pc.

  8. https://www.d1ev.com/news/jishu/110370.

References

  • Ahmadi, P. (2019). Environmental impacts and behavioral drivers of deep decarbonization for transportation through electric vehicles. Journal of Cleaner Production, 225, 1209–1219.

    Article  Google Scholar 

  • Cachon, G. P., & Lariviere, M. A. (2001). Contracting to assure supply: How to share demand forecasts in a supply chain. Management Science, 47(5), 629–646.

    Article  Google Scholar 

  • Cachon, G. P., & Zhang, F. (2006). Procuring fast delivery: Sole sourcing with information asymmetry. Management Science, 52(6), 881–896.

    Article  Google Scholar 

  • Ding, Q., Dong, C., & Pan, Z. (2016). A hierarchical pricing decision process on a dual-channel problem with one manufacturer and one retailer. International Journal of Production Economics, 175, 197–212.

    Article  Google Scholar 

  • Dong, C., Shen, B., Chow, P. S., Yang, L., & Ng, C. T. (2016). Sustainability investment under cap-and-trade regulation. Annals of Operations Research, 240(2), 509–531.

    Article  Google Scholar 

  • Du, S., Hu, L., & Wang, L. (2017). Low-carbon supply policies and supply chain performance with carbon concerned demand. Annals of Operations Research, 255(1–2), 569–590.

    Article  Google Scholar 

  • Fan, Z. P., Chen, Z., & Zhao, X. (2020). Battery outsourcing decision and product choice strategy of an electric vehicle manufacturer. International Transactions in Operational Research. https://doi.org/10.1111/itor.12814.

    Article  Google Scholar 

  • Fu, J., Chen, X., & Hu, Q. (2018). Subsidizing strategies in a sustainable supply chain. Journal of the Operational Research Society, 69(2), 283–295.

    Article  Google Scholar 

  • Ge, Z., Hu, Q., & Xia, Y. (2014). Firms’ R&D cooperation behavior in a supply chain. Production and Operations Management, 23(4), 599–609.

    Article  Google Scholar 

  • Ghosh, D., & Shah, J. (2015). Supply chain analysis under green sensitive consumer demand and cost sharing contract. International Journal of Production Economics, 164, 319–329.

    Article  Google Scholar 

  • Ghosh, D., Shah, J., & Swami, S. (2020). Product greening and pricing strategies of firms under green sensitive consumer demand and environmental regulations. Annals of Operations Research, 290(1), 491–520.

    Article  Google Scholar 

  • Gu, X., Ieromonachou, P., & Zhou, L. (2019). Subsidising an electric vehicle supply chain with imperfect information. International Journal of Production Economics, 211, 82–97.

    Article  Google Scholar 

  • Guo, F., Yang, J., & Lu, J. (2018). The battery charging station location problem: Impact of users’ range anxiety and distance convenience. Transportation Research Part E Logistics and Transportation Review, 114, 1–18.

    Article  Google Scholar 

  • Hong, Z., & Guo, X. (2019). Green product supply chain contracts considering environmental responsibilities. Omega, 83, 155–166.

    Article  Google Scholar 

  • Huang, J., Leng, M., Liang, L., & Liu, J. (2013). Promoting electric automobiles: Supply chain analysis under a government’s subsidy incentive scheme. IIE Transactions, 45(8), 826–844.

    Article  Google Scholar 

  • Jang, D. C., Kim, B., & Lee, S. Y. (2018). A two-sided market platform analysis for the electric vehicle adoption: Firm strategies and policy design. Transportation Research Part D: Transport and Environment, 62, 646–658.

    Article  Google Scholar 

  • Lim, M. K., Mak, H. Y., & Rong, Y. (2014). Toward mass adoption of electric vehicles: Impact of the range and resale anxieties. Manufacturing and Service Operations Management, 17(1), 101–119.

    Article  Google Scholar 

  • Liu, Y., Li, J., Quan, B. T., & Yang, J. B. (2019). Decision analysis and coordination of two-stage supply chain considering cost information asymmetry of corporate social responsibility. Journal of Cleaner Production, 228, 1073–1087.

    Article  Google Scholar 

  • Luo, C., Leng, M., Huang, J., & Liang, L. (2014). Supply chain analysis under a price-discount incentive scheme for electric vehicles. European Journal of Operational Research, 235(1), 329–333.

    Article  Google Scholar 

  • MOF. (2018). Notice on Adjusting and Perfecting the Policy of Financial Subsidies for the Promotion and Application of New Energy Vehicles. Retrieved October 15, 2019, from http://jjs.mof.gov.cn/zhengwuxinxi/zhengcefagui/201802/t20180213_2815574.html.

  • MOF. (2019). Notice on Further Perfecting the Policy of Financial Subsidies for the Promotion and Application of New Energy Vehicles. Retrieved October 15, 2019, from http://jjs.mof.gov.cn/zhengwuxinxi/zhengcefagui/201903/P020190326640122645440.doc.

  • Shao, L., Yang, J., & Zhang, M. (2017). Subsidy scheme or price discount scheme? Mass adoption of electric vehicles under different market structures. European Journal of Operational Research, 262(3), 1181–1195.

    Article  Google Scholar 

  • Wei, J., Govindan, K., Li, Y., & Zhao, J. (2015). Pricing and collecting decisions in a closed-loop supply chain with symmetric and asymmetric information. Computers and Operations Research, 54, 257–265.

    Article  Google Scholar 

  • Xia, L., Guo, T., Qin, J., Yue, X., & Zhu, N. (2018). Carbon emission reduction and pricing policies of a supply chain considering reciprocal preferences in cap-and-trade system. Annals of Operations Research, 268(1–2), 149–175.

    Article  Google Scholar 

  • Xie, G. (2015). Modeling decision processes of a green supply chain with regulation on energy saving level. Computers and Operations Research, 54, 266–273.

    Article  Google Scholar 

  • Xie, C., Wu, X., & Boyles, S. (2019). Traffic equilibrium with a continuously distributed bound on travel weights: The rise of range anxiety and mental account. Annals of Operations Research, 273(1–2), 279–310.

    Article  Google Scholar 

  • Yan, B., Liu, Y. P., & Li, H. Y. (2015). Decision analysis of retailer-dominated hybrid channel supply chain under the asymmetric cost information. Chinese Journal of Management Science, 23(12), 124–134.

    Google Scholar 

  • Yan, B., Wang, T., Liu, Y. P., & Liu, Y. (2016). Decision analysis of retailer-dominated dual-channel supply chain considering cost misreporting. International Journal of Production Economics, 178, 34–41.

    Article  Google Scholar 

  • Yang, H., & Chen, W. (2018). Retailer-driven carbon emission abatement with consumer environmental awareness and carbon tax: Revenue-sharing versus cost-sharing. Omega, 78, 179–191.

    Article  Google Scholar 

  • Yang, D. X., Qiu, L. S., Yan, J. J., Chen, Z. Y., & Jiang, M. (2019). The government regulation and market behavior of the new energy automotive industry. Journal of Cleaner Production, 210, 1281–1288.

    Article  Google Scholar 

  • Yang, R., Tang, W., Dai, R., & Zhang, J. (2018). Contract design in reverse recycling supply chain with waste cooking oil under asymmetric cost information. Journal of Cleaner Production, 201, 61–77.

    Article  Google Scholar 

  • Yuyin, Y., & Jinxi, L. (2018). The effect of governmental policies of carbon taxes and energy-saving subsidies on enterprise decisions in a two-echelon supply chain. Journal of Cleaner Production, 181, 675–691.

    Article  Google Scholar 

  • Zhang, S., Wang, C., Yu, C., & Ren, Y. (2019). Governmental cap regulation and manufacturer’s low carbon strategy in a supply chain with different power structures. Computers and Industrial Engineering, 134, 27–36.

    Article  Google Scholar 

  • Zhu, W., & He, Y. (2017). Green product design in supply chains under competition. European Journal of Operational Research, 258(1), 165–180.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Science Foundation of China (Project No. 72031002) and the 111 Project (B16009).

Funding

This study was funded by the National Science Foundation of China (Project No. 72031002) and the 111 Project (B16009).

Author information

Authors and Affiliations

Authors

Contributions

All authors: Methodology, Formal analysis, Writing - original draft, Supervision, Validation, Writing - review & editing.

Corresponding author

Correspondence to Zhi-Ping Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 1

Obviously, \( m_{1} = \frac{{\left( {k + s} \right)\left( {a - c_{1} - c_{2} } \right) + 4\beta \lambda R_{0} }}{{\left[ {4\beta \lambda - \left( {k + s} \right)^{2} } \right]R_{0} }} > \frac{{k\left( {a - c_{2} - c_{1} } \right) + 4\beta \lambda R_{0} }}{{\left( {4\beta \lambda - k^{2} } \right)R_{0} }} = m_{0} \), \( \varPi_{M}^{{AI_{2} }} = \frac{{\beta^{2} \lambda^{2} \left[ {a - c_{2} - c_{1} + \left( {k + s} \right)R_{0} } \right]^{2} }}{{\left[ {4\beta \lambda - \left( {k + s} \right)^{2} } \right]^{2} }} > \frac{{\beta^{2} \lambda^{2} \left( {a - c_{1} - c_{2} + kR_{0} } \right)^{2} }}{{\left( {4\beta \lambda - k^{2} } \right)^{2} }} = \varPi_{M}^{{AI_{1} }} \). For the comparison of \( \varPi_{S}^{{AI_{1} }} \) and \( \varPi_{S}^{{AI_{2} }} \), we first analyze the size relationship between \( \frac{{4\beta^{2} \lambda - \left( {k + s} \right)^{2} }}{{\left[ {4\beta \lambda - \left( {k + s} \right)^{2} } \right]^{2} }} \) and \( \frac{{4\beta^{2} \lambda - k^{2} }}{{\left( {4\beta \lambda - k^{2} } \right)^{2} }} \). Let \( \frac{{4\beta^{2} \lambda - \left( {k + s} \right)^{2} }}{{\left[ {4\beta \lambda - \left( {k + s} \right)^{2} } \right]^{2} }} > \frac{{4\beta^{2} \lambda - k^{2} }}{{\left( {4\beta \lambda - k^{2} } \right)^{2} }} \), we have \( 32\lambda^{2} \beta^{3} \left( {A - B} \right) + 4\lambda \beta^{2} \left( {B^{2} - A^{2} } \right) + 16\lambda^{2} \beta^{2} \left( {B - A} \right) + A^{2} B - AB^{2} > 0 \), where \( A = \left( {k + s} \right)^{2} \) and \( B = k^{2} \). Let \( F = 32\lambda^{2} \beta^{3} \left( {A - B} \right) + 4\lambda \beta^{2} \left( {B^{2} - A^{2} } \right) + 16\lambda^{2} \beta^{2} \left( {B - A} \right) + A^{2} B - AB^{2} \), it is easy to find that \( F\left( {\beta = 1} \right) > 0 \), \( \frac{dF}{d\beta } = 8\lambda \beta \left( {A - B} \right)\left[ {4\lambda \beta - A + 4\lambda \beta - B + 4\lambda \beta - 4\lambda } \right] > 0 \). Thus, \( \frac{{4\beta^{2} \lambda - \left( {k + s} \right)^{2} }}{{\left[ {4\beta \lambda - \left( {k + s} \right)^{2} } \right]^{2} }} > \frac{{4\beta^{2} \lambda - k^{2} }}{{\left( {4\beta \lambda - k^{2} } \right)^{2} }} \) holds. Also, because \( \frac{{\lambda \left[ {a - c_{2} - c_{1} + \left( {k + s} \right)R_{0} } \right]^{2} }}{2} > \frac{{\lambda \left( {a - c_{2} - c_{1} + kR_{0} } \right)^{2} }}{2} \), \( \varPi_{S}^{{AI_{2} }} = \frac{{\lambda \left[ {4\beta^{2} \lambda - \left( {k + s} \right)^{2} } \right]\left[ {a - c_{2} - c_{1} + \left( {k + s} \right)R_{0} } \right]^{2} }}{{2\left[ {4\beta \lambda - \left( {k + s} \right)^{2} } \right]^{2} }} > \frac{{\lambda \left( {4\beta^{2} \lambda - k^{2} } \right)\left( {a - c_{1} - c_{2} + kR_{0} } \right)^{2} }}{{2\left( {4\beta \lambda - k^{2} } \right)^{2} }} = \varPi_{S}^{{AI_{1} }} \). As a result, when \( 1 < m \le m_{1} \), \( \varPi_{S}^{{AI_{1} }} \le \varPi_{S}^{{AI_{2} }} \), \( \varPi_{M}^{{AI_{1} }} \le \varPi_{M}^{{AI_{2} }} \); when \( m > m_{1} \),\( \varPi_{S}^{{AI_{1} }} > \varPi_{S}^{{AI_{2} }} \), \( \varPi_{M}^{{AI_{1} }} > \varPi_{M}^{{AI_{2} }} \). Therefore, Proposition 1 is proved.

Proof of Proposition 2

(1)\( R_{{}}^{{AI_{1} }} = \frac{{k\left( {a - c_{2} - c_{1} } \right) + 4\lambda R_{0} }}{{4\lambda - k^{2} }} > \frac{{4\lambda - k^{2} }}{{4\lambda - k^{2} }}R_{0} = R_{0} \), \( R_{{}}^{{AI_{2} }} = \frac{{\left( {k + s} \right)\left( {a - c_{2} - c_{1} } \right) + 4\lambda R_{0} }}{{4\lambda - \left( {k + s} \right)^{2} }} > \frac{{k\left( {a - c_{2} - c_{1} } \right) + 4\lambda R_{0} }}{{4\lambda - \left( {k + s} \right)^{2} }} > \frac{{k\left( {a - c_{2} - c_{1} } \right) + 4\lambda R_{0} }}{{4\lambda - k^{2} }} = R_{{}}^{{AI_{1} }} \). Thus, \( R_{0} < R^{{AI_{1} }} < R^{{AI_{2} }} \).(2) \( w^{{AI_{1} }} - w^{AN} = \frac{{k^{2} \left( {a - c_{1} - c_{2} + kR_{0} } \right)}}{{2\left( {4\lambda - k^{2} } \right)}} > 0 \), \( w^{AN} - w^{NN} = \frac{{sR_{0} }}{2} > 0 \). Let \( w^{{AI_{2} }} < w^{NN} \). we have \( \left( {k^{2} - s^{2} } \right)\left( {a - c_{1} - c_{2} } \right) + \left( {k - s} \right)\left( {k + s} \right)^{2} R_{0} < 0 \) and it always holds. Thus, \( w^{{AI_{2} }} < w^{NN} < w^{AN} < w^{{AI_{1} }} \).(3) \( p^{{AI_{1} }} - p^{AN} = \frac{{3k^{2} \left( {a - c_{1} - c_{2} + kR_{0} } \right)}}{{4\left( {4\lambda - k^{2} } \right)}} > 0 \), \( p^{AN} - p^{NN} = \frac{{sR_{0} }}{4} > 0 \). Let \( p^{{AI_{2} }} < p^{NN} \), we have \( \left( {3k - s} \right)\left( {k + s} \right)\left( {a - c_{1} - c_{2} } \right) + \left( {3k - s} \right)\left( {k + s} \right)^{2} R_{0} < 0 \) and it always holds. Thus, \( p^{{AI_{2} }} < p^{NN} < p^{AN} < p^{{AI_{1} }} \).(4) \( q^{{AI_{2} }} - q^{{AI_{1} }} = \frac{{\left( {2ks + s^{2} } \right)\left( {a - c_{1} - c_{2} } \right) + \left( {4\lambda s + k^{2} s + ks^{2} } \right)R_{0} }}{{\left[ {4\lambda - \left( {k + s} \right)^{2} } \right]\left( {4\lambda - k^{2} } \right)}} > 0 \), \( q^{NN} - q^{AN} = \frac{{sR_{0} }}{4} > 0 \). Let \( q^{{AI_{1} }} > q^{NN} \), we have \( a - c_{1} - c_{2} + \left( {k + s - \frac{4\lambda s}{{k^{2} }}} \right)R_{0} > 0 \) and it always holds. Thus, \( q^{AN} < q^{NN} < q^{{AI_{1} }} < q^{{AI_{2} }} \).In summary, Proposition 2 is proved.

Proof of Proposition 3

\( \frac{{\partial w_{{}}^{{AI_{1} }} }}{\partial k} = \frac{{4\lambda k\left( {a - c_{1} - c_{2} } \right) + 2\lambda \left( {4\lambda + k^{2} } \right)R_{0} }}{{\left( {4\lambda - k^{2} } \right)^{2} }} > 0 \), \( \frac{{\partial p_{{}}^{{AI_{1} }} }}{\partial k} = \frac{{6\lambda k\left( {a - c_{1} - c_{2} } \right) + 3\lambda \left( {4\lambda + k^{2} } \right)R_{0} }}{{\left( {4\lambda - k^{2} } \right)^{2} }} > 0 \), \( \frac{{\partial R_{{}}^{{AI_{1} }} }}{\partial k} = - \frac{{4k\left( {a - c_{1} - c_{2} + kR_{0} } \right)}}{{\left( {4\lambda - k^{2} } \right)^{2} }} < 0 \), \( \frac{{\partial q_{{}}^{{AI_{1} }} }}{\partial k} = - \frac{{k^{2} \left( {a - c_{1} - c_{2} + kR_{0} } \right)}}{{\left( {4\lambda - k^{2} } \right)^{2} }} < 0 \). \( \frac{{\partial w_{{}}^{{AI_{1} }} }}{\partial \lambda } = - \frac{{2k^{2} \left( {a - c_{1} - c_{2} - kR_{0} } \right)}}{{\left( {4\lambda - k^{2} } \right)^{2} }} < 0 \), \( \frac{{\partial p_{{}}^{{AI_{1} }} }}{\partial \lambda } = - \frac{{3k^{2} \left( {a - c_{1} - c_{2} - kR_{0} } \right)}}{{\left( {4\lambda - k^{2} } \right)^{2} }} < 0 \), \( \frac{{\partial R_{{}}^{{AI_{1} }} }}{\partial \lambda } = - \frac{{4k\left( {a - c_{1} - c_{2} - kR_{0} } \right)}}{{\left( {4\lambda - k^{2} } \right)^{2} }} < 0 \), \( \frac{{\partial q_{{}}^{{AI_{1} }} }}{\partial \lambda } = - \frac{{k^{2} \left( {a - c_{1} - c_{2} - kR_{0} } \right)}}{{\left( {4\lambda - k^{2} } \right)^{2} }} < 0 \). \( \frac{{\partial w_{{}}^{{AI_{1} }} }}{{\partial R_{0} }} = \frac{2\lambda k}{{4\lambda - k^{2} }} > 0 \), \( \frac{{\partial p_{{}}^{{AI_{1} }} }}{{\partial R_{0} }} = \frac{3\lambda k}{{4\lambda - k^{2} }} > 0 \), \( \frac{{\partial R_{{}}^{{AI_{1} }} }}{{\partial R_{0} }} = \frac{4\lambda }{{4\lambda - k^{2} }} > 0 \), \( \frac{{\partial q_{{}}^{{AI_{1} }} }}{{\partial R_{0} }} = \frac{\lambda k}{{4\lambda - k^{2} }} > 0 \). Therefore, Proposition 3 is proved.

Proof of Proposition 4

(1) \( \frac{{\partial w_{{}}^{{AI_{2} }} }}{\partial k} = \frac{{\left( {4\lambda k - k^{2} s - 2ks^{2} - s^{3} } \right)\left( {a - c_{1} - c_{2} } \right) + \left( {8\lambda^{2} + 2\lambda k^{2} - 4\lambda ks - 6\lambda s^{2} } \right)R_{0} }}{{\left[ {4\lambda - \left( {k + s} \right)^{2} } \right]^{2} }} \). Because \( a \) is large enough, \( \frac{{\partial w_{{}}^{{AI_{2} }} }}{\partial k} > 0 \) always holds in the case of \( 4\lambda k - k^{2} s - 2ks^{2} - s^{3} > 0 \), and we obtain \( \lambda > \frac{{k^{2} s + 2ks^{2} + s^{3} }}{4k} \). Let \( 8\lambda^{2} + 2\lambda k^{2} - 4\lambda ks - 6\lambda s^{2} \ge 0 \), we get \( \lambda \ge \frac{{3s^{2} - k^{2} + 2ks}}{4} \). Because \( s > 3k \), \( \frac{{k^{2} s + 2ks^{2} + s^{3} }}{4k} - \frac{{3s^{2} - k^{2} + 2ks}}{4} = \frac{{s\left( {s^{2} - ks - k^{2} } \right) - k^{3} }}{4k} > \frac{{7k^{2} }}{2} > 0 \). Then, when \( \lambda = \frac{{k^{2} s + 2ks^{2} + s^{3} }}{4k} \), \( \frac{{\partial w_{{}}^{{AI_{2} }} }}{\partial k} > 0 \) still holds. Thus, when \( \lambda \ge \lambda_{1} = \frac{{k^{2} s + 2ks^{2} + s^{3} }}{4k} \), \( \frac{{\partial w_{{}}^{{AI_{2} }} }}{\partial k} > 0 \).\( \frac{{\partial p_{{}}^{{AI_{2} }} }}{\partial k} = \frac{{\left( {2\lambda s + 6\lambda k - k^{2} s - 2ks^{2} - s^{3} } \right)\left( {a - c_{1} - c_{2} } \right) + \left( {12\lambda^{2} + 3\lambda k^{2} - 2\lambda ks - 5\lambda s^{2} } \right)R_{0} }}{{\left[ {4\lambda - \left( {k + s} \right)^{2} } \right]^{2} }} \). Let \( 2\lambda s + 6\lambda k - k^{2} s \)\( - 2ks^{2} - s^{3} > 0 \), we have \( \lambda > \frac{{k^{2} s + 2ks^{2} + s^{3} }}{2s + 6k} \). Let \( 12\lambda^{2} + 3\lambda k^{2} - 2\lambda ks - 5\lambda s^{2} \ge 0 \), we have \( \lambda \ge \frac{{2ks + 5s^{2} - 3k^{2} }}{12} \). Because of \( s > 3k \), it is straightforward to find \( \frac{{k^{2} s + 2ks^{2} + s^{3} }}{2s + 6k} > \frac{{2ks + 5s^{2} - 3k^{2} }}{12} \). Thus, when \( \lambda \ge \lambda_{2} = \frac{{k^{2} s + 2ks^{2} + s^{3} }}{2s + 6k} \), \( \frac{{\partial p_{{}}^{{AI_{2} }} }}{\partial k} > 0 \). \( \frac{{\partial R_{{}}^{{AI_{2} }} }}{\partial k} = \frac{{\left[ {4\lambda + \left( {k + s} \right)^{2} } \right]\left( {a - c_{1} - c_{2} } \right) + 8\lambda \left( {s + k} \right)R_{0} }}{{\left[ {4\lambda - \left( {k + s} \right)^{2} } \right]^{2} }} > 0 \), \( \frac{{\partial q_{{}}^{{AI_{2} }} }}{\partial k} = \frac{1}{{\left[ {4\lambda - \left( {k + s} \right)^{2} } \right]^{2} }}\left\{ {2\lambda \left( {s + k} \right)\left( {a - c_{1} - c_{2} } \right)} \right. \)\( + \left. {\left[ {4\lambda^{2} + \lambda \left( {k + s} \right)^{2} } \right]R_{0} } \right\} > 0 \).(2) \( \frac{{\partial w_{{}}^{{AI_{2} }} }}{\partial \lambda } = \frac{{2\left( {s^{2} - k^{2} } \right)\left( {a - c_{1} - c_{2} } \right) + 2\left( {s - k} \right)\left( {k + s} \right)^{2} R_{0} }}{{\left[ {4\lambda - \left( {k + s} \right)^{2} } \right]^{2} }} > 0 \), \( \frac{{\partial p_{{}}^{{AI_{2} }} }}{\partial \lambda } = \frac{1}{{\left[ {4\lambda - \left( {k + s} \right)^{2} } \right]^{2} }}\left\{ {\left( {s - 3k} \right)\left( {s + k} \right) \cdot \left. {\left( {a - c_{1} - c_{2} } \right) + \left( {s^{3} - 3k^{3} - 5k^{2} s - ks^{2} } \right)R_{0} } \right\} > 0} \right. \), \( \frac{{\partial R_{{}}^{{AI_{2} }} }}{\partial \lambda } = - \frac{{4\left( {s + k} \right)\left( {a - c_{1} - c_{2} } \right) + 4\left( {s + k} \right)^{2} R_{0} }}{{\left[ {4\lambda - \left( {k + s} \right)^{2} } \right]^{2} }} < 0 \), \( \frac{{\partial q_{{}}^{{AI_{2} }} }}{\partial \lambda } = - \frac{{\left( {s + k} \right)^{2} \left( {a - c_{1} - c_{2} } \right) + \left( {s + k} \right)^{3} R_{0} }}{{\left[ {4\lambda - \left( {k + s} \right)^{2} } \right]^{2} }} < 0 \).(3) \( \frac{{\partial w_{{}}^{{AI_{2} }} }}{{\partial R_{0} }} = - \frac{{2\lambda \left( {s - k} \right)}}{{4\lambda - \left( {k + s} \right)^{2} }} < 0 \), \( \frac{{\partial p_{{}}^{{AI_{2} }} }}{{\partial R_{0} }} = - \frac{{\lambda \left( {s - 3k} \right)}}{{4\lambda - \left( {k + s} \right)^{2} }} < 0 \), \( \frac{{\partial R_{{}}^{{AI_{2} }} }}{{\partial R_{0} }} = \frac{4\lambda }{{4\lambda - \left( {k + s} \right)^{2} }} > 0 \), \( \frac{{\partial q_{{}}^{{AI_{2} }} }}{{\partial R_{0} }} = \frac{{\lambda \left( {s + k} \right)}}{{4\lambda - \left( {k + s} \right)^{2} }} > 0 \).In summary, Proposition 4 is proved.

Proof of Proposition 5

By Table 4, we can find that when \( \bar{R} > \frac{{\left( {k + s} \right)\left( {a - c_{2} - c_{1} } \right) + 4\lambda R_{0} }}{{4\lambda - \left( {k + s} \right)^{2} }} = R_{1} \), \( m^{\prime}_{1} \left( {\beta = 1} \right) = \frac{{\left( {k + s} \right)\left( {a - c_{2} - c_{1} } \right) + 4\lambda R_{0} }}{{\left[ {4\lambda - \left( {k + s} \right)^{2} } \right]R_{0} }} > \frac{{k\left( {a - c_{2} - c_{1} } \right) + 4\lambda R_{0} }}{{\left( {4\lambda - k^{2} } \right)R_{0} }} = m^{\prime}_{0} \left( {\beta = 1} \right) \), \( \varPi_{S}^{{AI_{2} }} = \frac{{\lambda \left[ {a - c_{2} - c_{1} + \left( {k + s} \right)R_{0} } \right]^{2} }}{{2\left[ {4\lambda - \left( {k + s} \right)^{2} } \right]}} \)\( > \frac{{\lambda \left( {a - c_{2} - c_{1} + kR_{0} } \right)^{2} }}{{2\left( {4\lambda - k^{2} } \right)}} = \varPi_{S}^{{AI_{1} }} \), \( \varPi_{M}^{{AI_{2} }} = \frac{{\lambda^{2} \left[ {a - c_{2} - c_{1} + \left( {k + s} \right)R_{0} } \right]^{2} }}{{\left[ {4\lambda - \left( {k + s} \right)^{2} } \right]^{2} }} > \frac{{\lambda^{2} \left( {a - c_{2} - c_{1} + kR_{0} } \right)^{2} }}{{\left( {4\lambda - k^{2} } \right)}} = \varPi_{M}^{{AI_{1} }} \). Therefore, when \( 1 < m \le m^{\prime}_{1} \) or \( m > m^{\prime}_{1} \), the optimal strategy is to raise the driving range level above or below the subsidy threshold.When \( \bar{R} \le R_{1} \), the BS needs to make the driving range level reach the technical upper limit if the driving range level is raised above the subsidy threshold. When \( 1 < m \le m^{\prime}_{0} \), the optimal strategy is to raise the driving range level above the subsidy threshold; when \( m > m^{\prime}_{1} \), raising it below the subsidy threshold is optimal. To get the optimal strategy when \( m^{\prime}_{0} < m < m^{\prime}_{1} \), the profits of the BS and EVM are compared respectively in \( ij = AI_{1} \) and \( ij = AI_{2} \). Let \( \varPi_{M}^{{AI_{2} }} = \frac{{\left[ {a + \left( {k + s} \right)\bar{R} - c_{1} - c_{2} } \right]^{2} }}{16} > \frac{{\lambda^{2} \left( {a - c_{2} - c_{1} + kR_{0} } \right)^{2} }}{{\left( {4\lambda - k^{2} } \right)}} = \varPi_{M}^{{AI_{1} }} \), we have \( \bar{R} \ge \frac{{k\left( {a - c_{1} - c_{2} } \right) + 4\lambda R_{0} }}{{4\lambda - k^{2} }} \cdot \frac{k}{k + s} = R_{2} < \frac{{\left( {k + s} \right)\left( {a - c_{1} - c_{2} } \right) + 4\lambda R_{0} }}{{4\lambda - \left( {k + s} \right)^{2} }} = R_{1} \). Thus, if \( m \le \frac{{R_{2} }}{{R_{0} }} \), when \( R_{2} \le \bar{R} \le R_{1} \), \( \varPi_{M}^{{AI_{2} }} \ge \varPi_{M}^{{AI_{1} }} \); when \( mR_{0} \le \bar{R} < R_{2} \), \( \varPi_{M}^{{AI_{2} }} < \varPi_{M}^{{AI_{1} }} \). If \( m > \frac{{R_{2} }}{{R_{0} }} \), when \( mR_{0} \le \bar{R} \le R_{1} \), \( \varPi_{M}^{{AI_{2} }} \ge \varPi_{M}^{{AI_{1} }} \). \( \varPi_{S}^{{AI_{2} }} - \varPi_{S}^{{AI_{1} }} = \frac{{\left[ {a + \left( {k + s} \right)\bar{R} - c_{1} - c_{2} } \right]^{2} }}{8} - \frac{{\lambda \left( {\bar{R} - R_{0} } \right)^{2} }}{2} - \frac{{\lambda \left( {a - c_{2} - c_{1} + kR_{0} } \right)^{2} }}{{2\left( {4\lambda - k^{2} } \right)}} \). Let \( n = a - c_{1} - c_{2} \), \( g = 4\lambda - k^{2} \), we have \( \varPi_{S}^{{AI_{2} }} - \varPi_{S}^{{AI_{1} }} = \frac{1}{8g}\left\{ {g\left[ {n + \left( {k + s} \right)\bar{R}} \right]^{2} - 4g\lambda \left( {\bar{R} - R_{0} } \right)^{2} - 4\lambda \left( {n + kR_{0} } \right)^{2} } \right\} \). Let \( F\left( {\bar{R}} \right) = g\left[ {n + \left( {k + s} \right)\bar{R}} \right]^{2} - 4g\lambda \left( {\bar{R} - R_{0} } \right)^{2} - 4\lambda \left( {n + kR_{0} } \right)^{2} \).\( \frac{{\partial F\left( {\bar{R}} \right)}}{{\partial \bar{R}}} = 2g\left( {k + s} \right)\left[ {n + \left( {k + s} \right)\bar{R}} \right] - 8g\lambda \left( {\bar{R} - R_{0} } \right) \), \( \frac{{\partial^{2} F\left( {\bar{R}} \right)}}{{\partial \bar{R}^{2} }} = 2g\left( {k + s} \right)^{2} - 8g\lambda = 2g\left[ {\left( {k + s} \right)^{2} - 4\lambda } \right] < 0 \). Let \( \frac{{\partial F\left( {\bar{R}} \right)}}{{\partial \bar{R}}} = 0 \), we obtain \( \bar{R}^{*} = \frac{{4\lambda R_{0} + n\left( {k + s} \right)}}{{4\lambda - \left( {k + s} \right)^{2} }} = \frac{{4\lambda R_{0} + \left( {a - c_{1} - c_{2} } \right)\left( {k + s} \right)}}{{4\lambda - \left( {k + s} \right)^{2} }} = R_{1} \). Therefore, when \( \bar{R} \le R_{1} \), \( \frac{{F\left( {\bar{R}} \right)}}{8g} \) is monotonically increasing with \( \bar{R} \). \( \frac{F\left( 0 \right)}{8g} = \frac{{\left( {4\lambda - k^{2} } \right)n^{2} - 4\lambda \left( {n + kR_{0} } \right)^{2} - 4g\lambda R_{0}^{2} }}{8g} < 0 \), \( \frac{{F\left( {\bar{R}^{ * } } \right)}}{8g} = \frac{{\lambda \left[ {a - c_{1} - c_{2} + \left( {k + s} \right)R_{0} } \right]^{2} }}{{2\left[ {4\lambda - \left( {k + s} \right)^{2} } \right]}} - \frac{{\lambda \left( {a - c_{1} - c_{2} + kR_{0} } \right)^{2} }}{{2\left( {4\lambda - k^{2} } \right)}} > 0 \). Then, when \( \bar{R} \le R_{1} \), \( \frac{{F\left( {\bar{R}} \right)}}{8g} \) only has one real root. Let \( \frac{{F\left( {\bar{R}} \right)}}{8g} = 0 \), we have \( \bar{R} = \frac{{8\lambda R_{0} \left( {4\lambda - k^{2} } \right) + 2\left( {k + s} \right)\left( {4\lambda - k^{2} } \right)\left( {a - c_{1} - c_{2} } \right) - \sqrt \Delta }}{{2\left( {4\lambda - k^{2} } \right)\left[ {4\lambda - \left( {k + s} \right)^{2} } \right]}} = R_{3} \) or \( \frac{{8\lambda R_{0} \left( {4\lambda - k^{2} } \right) + 2\left( {k + s} \right)\left( {4\lambda - k^{2} } \right)\left( {a - c_{1} - c_{2} } \right) + \sqrt \Delta }}{{2\left( {4\lambda - k^{2} } \right)\left[ {4\lambda - \left( {k + s} \right)^{2} } \right]}} \) which is rejected. Thus, if \( m \le \frac{{R_{3} }}{{R_{0} }} \), when \( R_{3} \le \bar{R} \le R_{1} \), \( \varPi_{S}^{{AI_{2} }} \ge \varPi_{S}^{{AI_{1} }} \); when \( mR_{0} \le \bar{R} < R_{3} \), \( \varPi_{S}^{{AI_{2} }} < \varPi_{S}^{{AI_{1} }} \). If \( m > \frac{{R_{3} }}{{R_{0} }} \), when \( mR_{0} \le \bar{R} \le R_{1} \), \( \varPi_{S}^{{AI_{2} }} \ge \varPi_{S}^{{AI_{1} }} \). Within the range of \( m^{\prime}_{0} < m < m^{\prime}_{1} \), there are the following results. If \( m \ge \hbox{max} \left\{ {\bar{R}_{2} ,\bar{R}_{3} } \right\}/R_{0} \), \( \varPi_{S}^{{AI_{2} }} \ge \varPi_{S}^{{AI_{1} }} \), \( \varPi_{M}^{{AI_{2} }} \ge \varPi_{M}^{{AI_{1} }} \). If \( \hbox{min} \left\{ {\bar{R}_{2} ,\bar{R}_{3} } \right\}/R_{0} < m < \hbox{max} \left\{ {\bar{R}_{2} ,\bar{R}_{3} } \right\}/R_{0} \), when \( \bar{R} \le \hbox{max} \left\{ {\bar{R}_{2} ,\bar{R}_{3} } \right\} \), the preferences of participants are inconsistent; when \( \hbox{max} \left\{ {\bar{R}_{2} ,\bar{R}_{3} } \right\} < \bar{R} \le R_{1} \), \( \varPi_{S}^{{AI_{2} }} \ge \varPi_{S}^{{AI_{1} }} \), \( \varPi_{M}^{{AI_{2} }} \ge \varPi_{M}^{{AI_{1} }} \). If \( m \le \hbox{min} \left\{ {\bar{R}_{2} ,\bar{R}_{3} } \right\}/R_{0} \), when \( \bar{R} < \hbox{min} \left\{ {\bar{R}_{2} ,\bar{R}_{3} } \right\} \), \( \varPi_{S}^{{AI_{2} }} < \varPi_{S}^{{AI_{1} }} \), \( \varPi_{M}^{{AI_{2} }} < \varPi_{M}^{{AI_{1} }} \); when \( \hbox{min} \left\{ {\bar{R}_{2} ,\bar{R}_{3} } \right\} \le \bar{R} < \hbox{max} \left\{ {\bar{R}_{2} ,\bar{R}_{3} } \right\} \), the preferences of participants are inconsistent; when \( \hbox{max} \left\{ {\bar{R}_{2} ,\bar{R}_{3} } \right\} \le \bar{R} \le R_{1} \), \( \varPi_{S}^{{AI_{2} }} \ge \varPi_{S}^{{AI_{1} }} \), \( \varPi_{M}^{{AI_{2} }} \ge \varPi_{M}^{{AI_{1} }} \).In summary, Proposition 5 is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Fan, ZP. Improvement strategies of battery driving range in an electric vehicle supply chain considering subsidy threshold and cost misreporting. Ann Oper Res 326, 89–113 (2023). https://doi.org/10.1007/s10479-020-03792-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03792-5

Keywords

Navigation