Skip to main content
Log in

Measuring performance in the presence of noisy data with targeted desirable levels: evidence from healthcare units

  • S.I.: BALCOR-2017
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Noise in data is not uncommon in real-world cases, although it is commonly omitted from performance measurement studies. In this paper, we develop a stochastic DEA-based methodology to measure performance when the endogenous (e.g. efficiency) and exogenous variables (e.g. perspectives of patients’ satisfaction), which are incorporated in the assessment, are inversely related. This methodology identifies benchmark units that are not only efficient but are also assigned scores for their exogenous variables, which are at least equal to user-defined critical values. We apply the performance measurement methodology to the 14 largest Cypriot health centers. The advantages of our methodology are pointed out through comparative analysis with alternative stochastic and non-stochastic DEA approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

\( (\eta_{h}^{{}} )^{ad} \) :

Adjusted efficiency score of the hth disqualified unit (\( h \subset j \))

η * :

Cut-off level for the efficiency scores

b * :

Cut-off level for the exogenous variables’ scores

c * :

User-defined critical value (or threshold target level)

\( b_{{k_{o} h}}^{d} \) :

koth undesirable exogenous variable of the hth unit that mostly deviates from c* (\( k \subset t, t = 1, \ldots ,w, h \subset j \))

\( b_{{(k \ne k_{o} )h}}^{d} \) :

kth ≠ koth undesirable exogenous variable of the hth unit (\( k_{o} \subset k \subset t, t = 1, \ldots ,w, h \subset j \))

\( (b_{{(k \ne k_{o} )h}}^{d} )^{ad} \) :

kth ≠ koth adjusted undesirable exogenous variable of the hth unit

\( b_{lh}^{q} \) :

lth desirable exogenous variable of the hth unit (\( l \subset t, t = 1, \ldots ,w, h \subset j \))

\( (b_{lh}^{q} )^{ad} \) :

lth adjusted desirable exogenous variable of the hth unit (\( l \subset t, t = 1, \ldots ,w, h \subset j \))

h :

Disqualified unit

HB-HE:

Desirable exogenous variable (B \( \ge \) c*)—desirable efficiency quadrant (η \( \ge \) 1.0)

LB-HE:

Undesirable exogenous variable (B < c*)—desirable efficiency quadrant (η \( \ge \) 1.0)

LB-LE:

Undesirable exogenous variable (B < c*)—undesirable efficiency quadrant (η < 1.0)

HB-LE:

Desirable exogenous variable (B \( \ge \) c*)—undesirable efficiency quadrant (η < 1.0)

h(A,C); h(A,D); h(A,F):

Facets of the hth unit in the plane defined by alternative coordinates

h(A’,C’); h(A’,D’); h(A’,F’):

Facets of the adjusted hth unit in the plane

(1) A, C; (2) A, D; (3) A, F:

Start and end points of the hypotenuses of the triangles: (1) Ah(A,C)C where A(b*,1.0), h(\( b_{{k_{o} h}}^{d} \),1.0) and C(\( b_{{k_{o} h}}^{d} \), η*), (2) Ah(A,D)D where A(b*,1.0), h(\( b_{{(k \ne k_{o} )h}}^{d} \),1.0) and D(\( b_{{(k \ne k_{o} )h}}^{d} \), η*), (3) Ah(A,F)F where A(b*,1.0), h(\( b_{lh}^{q} \),1.0) and F(\( b_{lh}^{q} \), η*)

(1) A’, C’; (2) A’, D’; (3) A’, F’:

Start and end points of the hypotenuses of the triangles: (1) A’h(A’,C’)C’ where A’(b*,\( (\eta_{h}^{{}} )^{ad} \)), h(c*,\( (\eta_{h}^{{}} )^{ad} \)) and C’(c*, η*), (2) A’h(A’,D’)D’ where A’(b*, \( (\eta_{h}^{{}} )^{ad} \)), h(\( (b_{{(k \ne k_{o} )h}}^{d} )^{ad} \),\( (\eta_{h}^{{}} )^{ad} \)) and D’(\( (b_{{(k \ne k_{o} )h}}^{d} )^{ad} \),η*), (3) A’h(A’,F’)F’ where A’(b*,\( (\eta_{h}^{{}} )^{ad} \)), h(\( (b_{lh}^{q} )^{ad} \),\( (\eta_{h}^{{}} )^{ad} \)) and F’(\( (b_{lh}^{q} )^{ad} \), η*)

References

  • Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 39, 1261–1264.

    Google Scholar 

  • Asmild, M., Hollingsworth, B., & Birch, S. (2013). The scale of hospital production in different settings: one size does not fit all. Journal of Productivity Analysis, 40, 197–206.

    Google Scholar 

  • Banker, R. D. (1996). Hypothesis tests using data envelopment analysis. Journal of Productivity Analysis, 7(2/3), 139–160.

    Google Scholar 

  • Banker, R. D., & Chang, H. (2006). The super-efficiency procedure for outlier identification, not for ranking efficient units. European Journal of Operational Research, 175, 1311–1320.

    Google Scholar 

  • Banker, R. D., Chang, H., & Zhiqiang, Z. (2017). On the use of super-efficiency procedures for ranking efficient units and identifying outliers. Annals of Operations Research, 250, 21–35.

    Google Scholar 

  • Boussofiane, A., Dyson, R. G., & Thanassoulis, E. (1991). Applied data envelopment analysis. European Journal of Operational Research, 52, 1–15.

    Google Scholar 

  • Cavalieri, M., Gitto, L., & Guccio, C. (2013). Reimbursement systems and quality of hospital care: An empirical analysis for Italy. Health Policy, 111, 273–289.

    Google Scholar 

  • Ceyhan, M. E., & Benneyan, J. C. (2014). Handling estimated proportions in public sector data envelopment analysis. Annals of Operations Research, 221(1), 107–132.

    Google Scholar 

  • Chambers, R. G., Chung, Y., & Färe, R. (1998). Profit, directional distance functions, and Nerlovian efficiency. Journal of Optimization Theory and Applications, 98, 351–364.

    Google Scholar 

  • Charles, V., & Kumar, M. (2014). Satisficing data envelopment analysis: An application to SERVQUAL efficiency. Measurement, 51, 71–80.

    Google Scholar 

  • Charnes, A., & Cooper, W. W. (1963). Deterministic equivalents for optimizing and satisficing under chance constraints. Operations Research, 11, 18–39.

    Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429–444.

    Google Scholar 

  • Chen, T. (2002). A comparison of chance-constrained DEA and stochastic frontier analysis: Bank efficiency in Taiwan. Journal of the Operational Research Society, 53, 492–500.

    Google Scholar 

  • Chen, J. X., Deng, M., & Gingras, S. (2011). A modified super-efficiency measure based on simultaneous input–output projection in data envelopment analysis. Computers & Operations Research, 38, 496–504.

    Google Scholar 

  • Cheng, G., & Zervopoulos, P. D. (2014). Estimating the technical efficiency of health care systems: A cross-country comparison using the directional distance function. European Journal of Operational Research, 238, 899–910.

    Google Scholar 

  • Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: A directional distance function approach. Journal of Environmental Management, 51, 229–240.

    Google Scholar 

  • Dotoli, M., Epicoco, N., Falagario, M., & Sciancalepore, F. (2015). A cross-efficiency fuzzy data envelopment analysis technique for performance evaluation of decision making units under uncertainty. Computers & Industrial Engineering, 79, 103–114.

    Google Scholar 

  • Dyson, R., & Shale, E. (2010). Data envelopment analysis, operational research and uncertainty. Journal of the Operational Research Society, 61, 25–34.

    Google Scholar 

  • Eslami, R., Khodabakhshi, M., Jahanshahloo, G. R., Hosseinzadeh Lotfi, F., & Khoveyni, M. (2012). Estimating most productive scale size with imprecise-chance constrained input-output orientation model in data envelopment analysis. Computers & Industrial Engineering, 63, 254–261.

    Google Scholar 

  • Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society Series A (General), 120, 253–281.

    Google Scholar 

  • Gok, M., & Sezen, B. (2013). Analyzing the ambiguous relationship between efficiency, quality and patient satisfaction in healthcare services: The case of public hospitals in Turkey. Health Policy, 111, 290–300.

    Google Scholar 

  • Griffin, P., Scherrer, C., & Swann, J. (2008). Optimization of community health center locations and service offerings with statistical need estimation. IIE Transactions, 40(9), 880–892.

    Google Scholar 

  • Grigoroudis, E., Tsitsiridi, E., & Zopounidis, C. (2013). Linking customer satisfaction, employee appraisal, and business performance: An evaluation methodology in the banking sector. Annals of Operations Research, 205, 5–27.

    Google Scholar 

  • Hagen, P., Veenstrab, M., & Stavemc, K. (2006). Efficiency and patient satisfaction in Norwegian hospitals, Health Economics Research Programme, Working paper, University of Oslo. https://www.duo.uio.no/handle/10852/30318; Accessed 20.11.15.

  • Huang, Z., & Li, S. X. (2001). Stochastic DEA models with different types of input–output disturbances. Journal of Productivity Analysis, 15, 95–113.

    Google Scholar 

  • Kong, G., Jiang, L., Yin, X., Wang, T., Xu, D. L., Yang, J. B., et al. (2018). Combining principal component analysis and the evidential reasoning approach for healthcare quality assessment. Annals of Operations Research, 271(2), 679–699.

    Google Scholar 

  • Land, K. C., Lovell, C. A. K., & Thore, S. (1993). Chance-constraint data envelopment analysis. Managerial and Decision Economics, 14, 541–554.

    Google Scholar 

  • Li, S. X. (1998). Stochastic models and variable returns to scales in data envelopment analysis. European Journal of Operational Research, 104, 532–548.

    Google Scholar 

  • Liu, W., Wang, Y. M., & Lyu, S. (2017). The upper and lower bound evaluation based on the quantile efficiency in stochastic data envelopment analysis. Expert Systems with Applications, 85, 14–24.

    Google Scholar 

  • Mitropoulos, P., Mastrogiannis, Ν., & Mitropoulos, I. (2014). Seeking interactions between patient satisfaction and efficiency in primary health care: Cluster and DEA analysis. International Journal of Multicriteria Decision Making, 4, 234–251.

    Google Scholar 

  • Mitropoulos, P., Talias, M. A., & Mitropoulos, I. (2015). Combining stochastic DEA with Bayesian analysis to obtain statistical properties of the efficiency scores: An application to Greek public hospitals. European Journal of Operational Research, 243, 302–311.

    Google Scholar 

  • Olesen, O. B. (2006). Comparing and combining two approaches for chance constrained DEA. Journal of Productivity Analysis, 26, 103–119.

    Google Scholar 

  • Olesen, O. B., & Petersen, N. C. (1995). Chance-constraint efficiency evaluation. Management Science, 41, 442–457.

    Google Scholar 

  • Olesen, O., & Petersen, N. (2002). The use of data envelopment analysis with probabilistic assurance region for measuring hospital efficiency. Journal of Productivity Analysis, 17, 83–109.

    Google Scholar 

  • Olesen, O. B., & Petersen, N. C. (2016). Stochastic data envelopment analysis—A review. European Journal of Operational Research, 251, 2–21.

    Google Scholar 

  • Ray, S. C. (2008). The directional distance function and measurement of super efficiency: An application to airlines data. Journal of the Operational Research Society, 59, 788–797.

    Google Scholar 

  • Seiford, L. M., & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 142, 16–20.

    Google Scholar 

  • Shimshak, D., Lenard, M., & Klimberg, R. (2009). Incorporating quality into data envelopment analysis of nursing home performance: A case study. Omega, 37, 672–685.

    Google Scholar 

  • Talluri, S., Narasimhana, R., & Nairb, A. (2006). Vendor performance with supply risk: A chance-constrained DEA approach. International Journal of Production Economics, 100, 212–222.

    Google Scholar 

  • Tsionas, E. G., & Papadakis, E. N. (2010). A Bayesian approach to statistical inference in stochastic DEA. Omega, 38, 309–314.

    Google Scholar 

  • Valentine, N., De Silva, A., Kawabata, K., Darby, C., Murray, C. J. L., & Evans, D. B. (2003). Health system responsiveness: concepts, domains, and operationalization. In C. J. L. Murray & D. B. Evans (Eds.), Health systems performance assessment: Debates, methods, and empiricism (pp. 573–596). Geneva: World Health Organization.

    Google Scholar 

  • Wagner, M., Shimshak, G., & Novak, A. (2003). Advances in physician profiling: The use of DEA. Socio-Economic Planning Sciences, 37, 141–163.

    Google Scholar 

  • Wu, D. (2010). A systematic stochastic efficiency analysis model and application to international supplier performance evaluation. Expert Systems with Applications, 37, 6257–6264.

    Google Scholar 

  • Zervopoulos, P. D., Brisimi, T. S., Emrouznejad, A., & Cheng, G. (2016). Performance measurement with multiple interrelated variables and threshold target levels: Evidence from retails firms in the US. European Journal of Operational Research, 250, 262–272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Mitropoulos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Section A

Expression (6) can be rewritten as follows:

$$ \frac{{(b_{{k_{o} h}}^{d} - b^{*} )^{2} + (\eta^{*} - \eta_{h} )^{2} }}{{(c^{*} - b^{*} )^{2} + (\eta^{*} - (\eta_{h} )^{ad} )^{2} }} = \frac{{(b_{{k_{o} h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} }}{{(c^{*} - b^{*} )^{2} \cdot (\eta^{*} - (\eta_{h} )^{ad} )^{2} }} $$
(14)

Let \( u_{1} = (b_{{k_{o} h}}^{d} - b^{*} )^{2} + (\eta^{*} - \eta_{h} )^{2} \) and \( u_{2} = (b_{{k_{o} h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} \)

Then, Eq. (14) is written as follows:

$$ \begin{aligned} u_{1} \cdot (c^{*} - b^{*} )^{2} \cdot (\eta^{*} - (\eta_{h} )^{ad} )^{2} & = u_{2} \cdot [(c^{*} - b^{*} )^{2} + (\eta^{*} - (\eta_{h} )^{ad} )^{2} ] \\ (\eta^{*} - (\eta_{h} )^{ad} )^{2} & = \frac{{u_{2} \cdot (c^{*} - b^{*} )^{2} }}{{u_{1} \cdot (c^{*} - b^{*} )^{2} - u_{2} }} \\ \left| {\eta^{*} - (\eta_{h} )^{ad} } \right| & = \left( {\frac{{u_{2} \cdot (c^{*} - b^{*} )^{2} }}{{u_{1} \cdot (c^{*} - b^{*} )^{2} - u_{2} }}} \right)^{1/2} \\ \end{aligned} $$
(15)

The acceptable real root of (15) is:

$$ (\eta_{h} )^{ad} = \eta^{*} + \left( {\frac{{u_{2} \cdot (c^{*} - b^{*} )^{2} }}{{u_{1} \cdot (c^{*} - b^{*} )^{2} - u_{2} }}} \right)^{1/2} $$
(16)

which satisfies the condition \( (\eta_{h} )^{ad} > \eta^{*} \)

By replacing \( u_{1} \) and \( u_{2} \) in (16) we obtain the following expression:

$$ (\eta_{h}^{{}} )^{ad} = \eta^{*} + \left( {\frac{{(b_{{k_{o} h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} \cdot (c^{*} - b^{*} )^{2} }}{{((b_{{k_{o} h}}^{d} - b^{*} )^{2} + (\eta^{*} - \eta_{h} )^{2} ) \cdot (c^{*} - b^{*} )^{2} - (b_{{k_{o} h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} }}} \right)^{1/2} $$
(17)

1.2 Section B

Let the expression (17)

$$ (\eta_{h}^{{}} )^{ad} = \eta^{*} + \left( {\frac{{(b_{{k_{o} h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} \cdot (c^{*} - b^{*} )^{2} }}{{((b_{{k_{o} h}}^{d} - b^{*} )^{2} + (\eta^{*} - \eta_{h} )^{2} ) \cdot (c^{*} - b^{*} )^{2} - (b_{{k_{o} h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} }}} \right)^{1/2} $$

By replacing the undesirable exogenous variable \( b_{{k_{o} h}}^{d} \) by the remaining undesirable exogenous variables (i.e. \( b_{{(k \ne k_{o} )h}}^{d} \)), and consequently replacing the critical value (i.e. \( c^{*} \)) by the adjusted value for the remaining undesirable exogenous variables (i.e. \( (b_{{(k \ne k_{o} )h}}^{d} )^{ad} \)), and by solving expression (17) for \( (b_{{(k \ne k_{o} )h}}^{d} )^{ad} \), the obtained expression is as follows:

$$ \begin{aligned} & (\eta_{h}^{{}} )^{ad} = \eta^{*} + \left( {\frac{{(b_{{(k \ne k_{o} )h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} \cdot ((b_{{(k \ne k_{o} )h}}^{d} )^{ad} - b^{*} )^{2} }}{{((b_{{(k \ne k_{o} )h}}^{d} - b^{*} )^{2} + (\eta^{*} - \eta_{h} )^{2} ) \cdot ((b_{{(k \ne k_{o} )h}}^{d} )^{ad} - b^{*} )^{2} - (b_{{(k \ne k_{o} )h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} }}} \right)^{1/2} \\ & ((\eta_{h}^{{}} )^{ad} - \eta^{*} )^{2} = \frac{{(b_{{(k \ne k_{o} )h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} \cdot ((b_{{(k \ne k_{o} )h}}^{d} )^{ad} - b^{*} )^{2} }}{{((b_{{(k \ne k_{o} )h}}^{d} - b^{*} )^{2} + (\eta^{*} - \eta_{h} )^{2} ) \cdot ((b_{{(k \ne k_{o} )h}}^{d} )^{ad} - b^{*} )^{2} - (b_{{(k \ne k_{o} )h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} }} \\ & ((\eta_{h}^{{}} )^{ad} - \eta^{*} )^{2} \cdot (((b_{{(k \ne k_{o} )h}}^{d} - b^{*} )^{2} + (\eta^{*} - \eta_{h} )^{2} ) \cdot ((b_{{(k \ne k_{o} )h}}^{d} )^{ad} - b^{*} )^{2} - (b_{{(k \ne k_{o} )h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} ) \\ & \quad = (b_{{(k \ne k_{o} )h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} \cdot ((b_{{(k \ne k_{o} )h}}^{d} )^{ad} - b^{*} )^{2} \\ & ((b_{{(k \ne k_{o} )h}}^{d} )^{ad} - b^{*} )^{2} \cdot (((\eta_{h}^{{}} )^{ad} - \eta^{*} )^{2} \cdot ((b_{{(k \ne k_{o} )h}}^{d} - b^{*} )^{2} + (\eta^{*} - \eta_{h} )^{2} ) - (b_{{(k \ne k_{o} )h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} ) \\ & \quad = ((\eta_{h}^{{}} )^{ad} - \eta^{*} )^{2} \cdot (b_{{(k \ne k_{o} )h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} \\ & (b_{{(k \ne k_{o} )h}}^{d} )^{ad} = b^{*} + \left( {\frac{{((\eta_{h}^{{}} )^{ad} - \eta^{*} )^{2} \cdot (b_{{(k \ne k_{o} )h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} }}{{((\eta_{h}^{{}} )^{ad} - \eta^{*} )^{2} \cdot ((b_{{(k \ne k_{o} )h}}^{d} - b^{*} )^{2} + (\eta^{*} - \eta_{h} )^{2} ) - (b_{{(k \ne k_{o} )h}}^{d} - b^{*} )^{2} \cdot (\eta^{*} - \eta_{h} )^{2} }}} \right)^{1/2} \\ \end{aligned} $$

1.3 Section C

The first non-stochastic performance measurement application draws on program (1) (see Sect. 2), which replaces program (3) in the algorithm, and the following program, which is used instead of program (11):

$$ \begin{aligned} & \hbox{min} \theta \\ & \begin{array}{*{20}l} {s.t.} \hfill & { \mathop \sum \limits_{j = 1}^{n} \lambda_{j} X_{ij} \le \theta X_{io} } \hfill \\ {} \hfill & {\mathop \sum \limits_{j = 1}^{n} \lambda_{j} y_{rj} \ge y_{ro} } \hfill \\ {} \hfill & {\mathop \sum \limits_{j = 1}^{n} \lambda_{j} B_{tj} \ge \theta B_{to} } \hfill \\ {} \hfill & {\lambda_{j} \ge 0} \hfill \\ \end{array} \\ \end{aligned} $$
(18)

Concerning the incorporation of DDF in the algorithm presented in Sect. 2 of this study, program (19) is used instead of program (3)

$$ \begin{aligned} & \hbox{max} \beta \\ & \begin{array}{*{20}l} {s.t. } \hfill & {\mathop \sum \limits_{j = 1}^{n} \lambda_{j} x_{ij} + \beta g_{x} \le x_{io} } \hfill \\ {} \hfill & {\mathop \sum \limits_{j = 1}^{n} \lambda_{j} y_{rj} - \beta g_{y} \ge y_{ro} } \hfill \\ {} \hfill & {\lambda_{j} \ge 0} \hfill \\ {} \hfill & {g_{x} = 1,\;g_{y} = 0} \hfill \\ \end{array} \\ \end{aligned} $$
(19)

where \( \beta \) expresses inefficiency, and \( g_{x} \) and \( g_{y} \) are the actual input and output direction vectors, respectively.

Moreover, program (20) replaces program (11)

$$ \begin{aligned} & \hbox{max} \beta \\ & \begin{array}{*{20}l} {s.t.} \hfill & { \mathop \sum \limits_{j = 1}^{n} \lambda_{j} X_{ij} + \beta g_{X} \le X_{io} } \hfill \\ {} \hfill & {\mathop \sum \limits_{j = 1}^{n} \lambda_{j} y_{rj} - \beta g_{y} \ge y_{ro} } \hfill \\ {} \hfill & {\mathop \sum \limits_{j = 1}^{n} \lambda_{j} B_{tj} - \beta g_{B} \le B_{to} } \hfill \\ {} \hfill & {\lambda_{j} \ge 0} \hfill \\ {} \hfill & {g_{x} = 1,\;g_{y} = 0,\;g_{B} = - 1} \hfill \\ \end{array} \\ \end{aligned} $$
(20)

where \( g_{X} \) and \( g_{B} \) stand for the direction vectors of all inputs (i.e. adjusted and non-adjusted, or actual) and all exogenous variables (i.e. adjusted and non-adjusted), respectively. The exogenous variables are freely disposable, like the inputs, as they cannot be regulated.

The third non-stochastic approach, the GDDF, is written as follows:

$$ \begin{aligned} & min\frac{{1 - \frac{1}{m}\mathop \sum \nolimits_{i = 1}^{m} \beta g_{i} /x_{io} }}{{1 + \frac{1}{s}\mathop \sum \nolimits_{r = 1}^{s} \beta g_{r} /y_{ro} }} \\ & \begin{array}{*{20}l} {s.t. } \hfill & {\mathop \sum \limits_{j = 1}^{n} \lambda_{j} x_{ij} + \beta g_{x} \le x_{io} } \hfill \\ {} \hfill & {\mathop \sum \limits_{j = 1}^{n} \lambda_{j} y_{rj} - \beta g_{y} \ge y_{ro} } \hfill \\ {} \hfill & { \lambda_{j} \ge 0} \hfill \\ {} \hfill & {g_{x} = 1,\;g_{y} = 0} \hfill \\ \end{array} \\ \end{aligned} $$
(21)

where \( \beta g_{i} /x_{io} \) denotes the proportional decrease in inputs, and \( \beta g_{r} /y_{ro} \) is the proportional increase in outputs. Program (21) is used in the performance measurement algorithm instead of program (3).

Moreover, program (11) is replaced by the following program:

$$ \begin{aligned} & min\frac{{1 - \frac{1}{m}\mathop \sum \nolimits_{i = 1}^{m} \beta g_{i} /X_{io} }}{{1 + \frac{1}{s + w}\left( {\mathop \sum \nolimits_{r = 1}^{s} \beta g_{r} /y_{ro} + \mathop \sum \nolimits_{t = 1}^{w} \beta g_{t} /B_{to} } \right)}} \\ & \begin{array}{*{20}l} {s.t. } \hfill & {\mathop \sum \limits_{j = 1}^{n} \lambda_{j} X_{ij} + \beta g_{x} \le X_{io} } \hfill \\ {} \hfill & {\mathop \sum \limits_{j = 1}^{n} \lambda_{j} y_{rj} - \beta g_{y} \ge y_{ro} } \hfill \\ {} \hfill & { \mathop \sum \limits_{j = 1}^{n} \lambda_{j} B_{tj} - \beta g_{B} \le B_{to} } \hfill \\ {} \hfill & {\lambda_{j} \ge 0} \hfill \\ {} \hfill & {g_{X} = 1,\;g_{y} = 0,\;g_{B} = - 1} \hfill \\ \end{array} \\ \end{aligned} $$
(22)

where \( \beta g_{i} /X_{io} \) expresses the proportional reduction in inputs, and \( \beta g_{r} /y_{ro} \) and \( \beta g_{t} /B_{to} \) are the proportional increase in outputs and proportional decrease in exogenous variables, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitropoulos, P., Zervopoulos, P.D. & Mitropoulos, I. Measuring performance in the presence of noisy data with targeted desirable levels: evidence from healthcare units. Ann Oper Res 294, 537–566 (2020). https://doi.org/10.1007/s10479-019-03280-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03280-5

Keywords

Navigation