Skip to main content
Log in

Mixed-asset portfolio allocation under mean-reverting asset returns

  • S.I.: Risk in Financial Economics
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Standard results about portfolio optimization suggest that the allocation to real estate in a mixed-asset portfolio should be around 15–20%. However, the institutional investors share in real estate is significantly smaller, around 7–9%. Many researches have addressed this point even if as of today no consensus has emerged. In this paper, we built-up an allocation model that can explain the empirical observed weights. For this purpose, we account for the term structure of all standard financial assets and also of real estate asset class (expected returns, volatilities and correlations depending on the time to maturity). We propose a dynamic portfolio optimization model that allows analyzing portfolio weights with respect to the whole term structure modelling, due to its tractability and its good fit when being adequately calibrated. In this framework, we provide explicit and operational solutions to the dynamic mixed-asset portfolio allocation (cash, real estate, stock and bond). The results show that accounting for investment horizon and mean-reverting dynamics allows to better examine how portfolio allocations depend on both risk aversion and investment horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. Andonov et al. (2013) examine about 880 pension funds in the United States, Canada, Europe, and Australia/New Zealand from 1990 to 2009. In 2009, the shares of these pension funds are respectively equal to 47.1% on stocks, to 36.9% on bonds, and to 2.5% on cash while the remaining amount (i.e. 13.5%) has been invested in alternative assets, especially 5.1% on Real Estate.

  2. Note that most studies relying on traditional mean/variance optimization assume i.i.d. returns.

  3. Heaney and Sriananthakumar (2012) highlight in particular how the correlation between real estate returns and capital markets is time-varying.

  4. Indeed, real estate markets present many specificities such as transaction costs, lack of liquidity (as illustrated—among other things—by the marketing period risk and the rental vacancy rate). It is also well documented that (the observed or reported) direct (private) real estate returns exhibit autocorrelation (see, among others, Geltner (1991) who deal with smoothing issue and Barkham and Geltner (1995) who point out that returns are not i.i.d.).

  5. For example, as noted by Rehring (2012): “high transaction costs imply expected real estate returns, per period, that are much higher in the long run than in the short run.” Regarding the volatility, Rehring (2012) examines the UK real estate market and shows that the conditional standard deviation of commercial real estate returns depends on the investment maturity as for usual stocks. In other words, Rehring (2012) internalizes the transaction costs both in the return and volatility modelling.

  6. All the previous authors find decreasing volatilities function for real estate and thus real estate is less risky for longer-horizon investors. Similar results are provided by Baroni et al. (2008) for the French residential market in Paris.

  7. Campbell and Viceira (2005) examine the US market and show that, contrary to cash, stock returns are mean reverting. This means that the long-term volatility of stock returns (per period) is lower than the short-term return volatility. They find also that bond returns are slighty mean reverting.

  8. As discussed by Bajeux-Besnainou et al. (2001), the introduction of constant duration bonds allows to get a bond/stock ratio which increases with time when assuming that returns follow geometric Brownian motions.

  9. Wachter (2002) considers only mean-reverting property of the drift of one single asset. This paper introduces a specific Ornstein–Uhlenbeck process to model the instantaneous Sharpe ratio (but with a constant volatility) which is driven by the same Brownian motion as for the dynamics of the risky asset. This allows the financial market completeness. In a discrete-time setting, Campbell and Viceira (2005) introduce a vector autoregressive (VAR) model, which justifies the mean-reverting property of the drift. However, such approach does not lead to exact explicit solutions and moreover volatility is also assumed to be constant. They deal also with only one single asset. When dealing with multi asset allocation, time-varying correlation must be also taken into account. Additionally, looking at financial data, return volatilities are also mean reverting. Finally, in the numerical section, note that all excess expected returns per year and standard deviations per year look like negative exponential functions of time to maturity. Thus, they correspond to the expectations of stochastic mean-reverting processes such as the Ornstein–Uhlenbeck process.

  10. Recall that the Ornstein–Uhlenbeck process is given by:

    $$\begin{aligned} r_{t}=r_{0}e^{-k_{r}t}+\overline{r}\left( 1-e^{-k_{r}t}\right) +a_{r}e^{-k_{r}t} \int _{0}^{t}e^{k_{r}s}dW_{s}^{r}.\, \end{aligned}$$

    It has been introduced by Vasicek (1977) to model stochastic interest rates (see e.g. Brigo and Mercurio 2006).

  11. Note also that we can determine the optimal weighting vector X from the vector of risk premia \(\theta \) itself since we have:

    $$\begin{aligned} X=\left( {\;}^{t} \Sigma \right) ^{-1}\Lambda =\left( {\;} ^{t}\Sigma \right) ^{-1}\Gamma ^{-1}\theta . \end{aligned}$$
  12. This is also the case for Pagliari (2017) at least for private real estate.

  13. For example, if we assume that the real estate asset dynamics is driven by more than one Brownian motion if we consider multi factor modelling.

  14. Obviously, other models can be introduced and examined. For example, we can take account of stochastic market prices of risk, of labor income as in El Karoui (1996), for no traded asset such as in Lioui and Poncet (2001). Nevertheless, note that, even in complete markets, Monte Carlo simulations are often necessary to compute optimal portfolios as for example in Detemple et al. (2003) or in Cvitanic et al. (2003).

  15. Detailed proofs are available on request.

References

  • Andonov, A., Kok, N., & Eichholtz, P. (2013). A global perspective on pension fund investments in real estate. Journal of Portfolio Management, 39, 32–42.

    Article  Google Scholar 

  • Bajeux-Besnainou, I., Jordan, J. V., & Portait, R. (2001). An asset allocation puzzle: Comment. American Economic Review, 91, 1170–1179.

    Article  Google Scholar 

  • Barkham, R. J., & Geltner, D. M. (1995). Price discovery and efficiency in British and American property markets. Real Estate Economics, 23, 22–44.

    Article  Google Scholar 

  • Baroni, M., Barthélémy, F., & Mokrane, M. (2008). Un nouvel indice de risque immobilier pour le marché résidentiel parisien. Revue Economique, 59, 99–118.

    Article  Google Scholar 

  • Brennan, M. J., & Xia, Y. (2000). Stochastic interest rates and the bond–stock mix. European Finance Review, 4, 197–210.

    Article  Google Scholar 

  • Brigo, D., & Mercurio, F. (2006). Interest rate models—Theory and practice. Berlin: Springer.

    Google Scholar 

  • Campbell, J. Y., & Viceira, L. M. (2002). Strategic asset allocation: Portfolio choice for long-term investors. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Campbell, J. Y., & Viceira, L. M. (2005). The term structure of the risk-return trade-off. Financial Analysts Journal, 61, 34–44.

    Article  Google Scholar 

  • Canner, N., Mankiw, N. G., & Weil, D. N. (1997). An asset allocation puzzle. American Economic Review, 87, 181–191.

    Google Scholar 

  • Chiarella, C., Semmler, W., Hsiao, C., & Mateane, L. (2016). Sustainable asset accumulation and dynamic portfolio decisions. Dynamic modeling and econometrics in economics and finance (Vol. 18). Berlin: Springer.

    Google Scholar 

  • Chun, G. H., Sa-Aadu, J., & Shilling, J. D. (2004). The role of real estate in an institutional investor’s portfolio revisited. Journal of Real Estate Finance and Economics, 29, 295–320.

    Article  Google Scholar 

  • Clayton, J. (2007). PREA plan sponsor research report. Hartford, CT: Pension Real Estate Association.

    Google Scholar 

  • Cox, J., & Huang, C. F. (1989). Optimal consumption and portfolio policies when asset prices follow a diffusion process. Journal of Economic Theory, 49, 33–83.

    Article  Google Scholar 

  • Cvitanic, J., Goukasian, L., & Zapatero, F. (2003). Monte Carlo computation of optimal portfolios in complete markets. Journal of Economic Dynamics and Control, 27, 971–986.

    Article  Google Scholar 

  • Cvitanic, J., & Karatzas, I. (1992). Convex duality in constrained portfolio optimization. Annals of Applied Probability, 2, 767–818.

    Article  Google Scholar 

  • de Palma, A., & Prigent, J.-L. (2009). Standardized versus customized portfolio: A compensating variation approach. Annals of Operations Research, 165, 161–185.

    Article  Google Scholar 

  • Detemple, J., Garcia, R., & Rindishbacher, M. (2003). A Monte Carlo method for optimal portfolios. Journal of Finance, 58, 401–446.

    Article  Google Scholar 

  • Duffie, D., & Kan, R. (1996). Yield-factor model of interest rates. Mathematical Finance, 6, 379–406.

    Article  Google Scholar 

  • Eichholtz, N. (1998). Does international diversification work better for real estate than for stocks and bonds? Financial Analysts Journal, 2, 409–440.

    Google Scholar 

  • El Karoui, P. (1996). Optimization of consumption with labor income. Finance and Stochastics, 52, 56–62.

    Google Scholar 

  • Fabozzi, F. (1996). Bond markets analysis and strategies (3rd ed.). Englewood Cliffs, N.J: Prentice Hall.

    Google Scholar 

  • Feldman, B. (2003). Investment policy for securitized and direct real estate. Chicago: Ibbotson Associates.

    Book  Google Scholar 

  • Fogler, H. (1984). 20% In real estate: Can theory justify it? Journal of Portfolio Management, 10, 6–13.

    Article  Google Scholar 

  • Fong, F. (1990). Portfolio construction: Fixed income. In J. L. Maginn & D. L. Tuttle (Eds.), Managing investment portfolios: A dynamic process (2nd ed.). Boston: Warren, Gorham and Lamont.

    Google Scholar 

  • Fugazza, C., Guidolin, M., & Nicodano, G. (2007). Investing for the long-run in European real estate. Journal of Real Estate Finance and Economics, 34, 35–80.

    Article  Google Scholar 

  • Geltner, D. (1991). Smoothing in appraisal-based returns. Journal of Real Estate Finance and Economics, 4, 327–345.

    Article  Google Scholar 

  • Gold, R. B. (1986). Real estate: Can institutional portfolios be diversified without it?. Chicago: JMB Institutional Realty Corporation.

    Google Scholar 

  • Gollier, C. (2001). The economics of risk and time. Cambridge, MA: The MIT Press.

    Book  Google Scholar 

  • Heaney, R., & Sriananthakumar, S. (2012). Time-varying correlation between stock market returns and real estate returns. Journal of Empirical Finance, 19, 583–594.

    Article  Google Scholar 

  • Hoesli, M., Lekander, J., & Witkiewicz, W. (2004). New international evidence on real estate as a portfolio diversifier. Journal of Real Estate Research, 26, 161–206.

    Google Scholar 

  • Hoesli, M., & MacGregor, B. D. (2000). Property Investment. Harlow, UK: Longman.

    Google Scholar 

  • Hudson-Wilson, S., Gordon, J. N., Fabozzi, F. J., Anson, M. J. P., & Giliberto, S. M. (2005). Why real estate? Journal of Portfolio Management, 31, 12–21.

    Article  Google Scholar 

  • Jacod, J., & Shiryaev, A. N. (2002). Limit theorems for stochastic processes (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Karatzas, I., Lehoczky, J. P., Shreve, S. E., & Xu, G. L. (1991). Martingale and duality methods for utility maximization in an incomplete market. SIAM Journal on Control and Optimization, 29, 702–730.

    Article  Google Scholar 

  • Lin, Z., & Liu, Y. (2008). Real estate returns and risk with heterogeneous investors. Real Estate Economics, 36, 753–776.

    Article  Google Scholar 

  • Lioui, A., & Poncet, P. (2001). On optimal portfolio choice under stochastic interest rates. Journal of Economic Dynamics and Control, 25, 1841–1865.

  • Long, J. B. (1990). The numeraire portfolio. Journal of Financial Economics, 26, 29–69.

    Article  Google Scholar 

  • MacKinnon, G. H., & Al Zaman, A. (2009). Real estate for the long term: The effect of return predictability on long-horizon allocations. Real Estate Economics, 37, 117–153.

    Article  Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7, 77–91.

    Google Scholar 

  • Merton, R. (1971). Optimum consumption and portfolio rules in a continuous-time model. Journal of Economic Theory, 3, 373–413.

    Article  Google Scholar 

  • Merton, R. C. (1992). Financial innovation and economic performance. Journal of Applied Corporate Finance, 4, 12–22.

    Article  Google Scholar 

  • Morgan, J. P. (2007). The alternative asset survey 2007. Luxembourg: JP Morgan Asset Management.

    Google Scholar 

  • Pagliari, J. L. (2017). Another take on real estate’s role in mixed-asset portfolio allocations. Real Estate Economics, 45, 75–132.

    Article  Google Scholar 

  • Prigent, J.-L. (2007). Portfolio optimization and performance analysis. Boca Raton, FL: Chapman and Hall.

    Book  Google Scholar 

  • Rehring, C. (2012). Real estate in a mixed-asset portfolio: The role of the investment horizon. Real Estate Economics, 40, 65–95.

    Article  Google Scholar 

  • Seiler, M. J., Webb, J. R., & Myer, F. C. N. (1999). Diversification issues in real estate investment. Journal of Real Estate Literature, 7, 163–179.

    Article  Google Scholar 

  • Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5, 177–88.

    Article  Google Scholar 

  • Wachter, J. A. (2002). Portfolio and consumption decisions under mean-reverting returns: An exact solution for complete markets. Journal of Financial and Quantitative Analysis, 37, 63–91.

    Article  Google Scholar 

  • Webb, J. R., & Rubens, J. H. (1986). Portfolio considerations in the valuation of real estate. Real Estate Economics, 14, 465–495.

    Article  Google Scholar 

  • Webb, J. R., & Rubens, J. H. (1987). How much in real estate? A surprising answer. Journal of Portfolio Management, 13, 10–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Prigent.

Appendices

Appendix A: Properties of the numeraire portfolio

Recall that the Radon–Nikodym density of the risk-neutral probability is given by:

$$\begin{aligned} \eta _{t}=\exp \left[ -\mathbf {M}_{t}-\int _{0}^{t}A(s)ds\right] \end{aligned}$$

where

$$\begin{aligned} \mathbf {M}_{t}=\int _{0}^{t}\lambda _{r,s}dW_{s}^{r}+\int _{0}^{t}\lambda _{P,s}dW_{s}^{P}+\int _{0}^{t}\lambda _{S,s}dW_{s}^{S}, \end{aligned}$$

and

$$\begin{aligned} A(t)=\frac{1}{2}\left( \lambda _{r,t}^{2}+\lambda _{P,t}^{2}+\lambda _{S,t}^{2}\right) +\lambda _{r,t}\lambda _{P,t}\rho ^{r,P}+\lambda _{r,t}\lambda _{S,t}\rho ^{r,S}+\lambda _{P,t}\lambda _{S,t}\rho ^{P,S}. \end{aligned}$$

The numeraire portfolio H is equal to:

$$\begin{aligned} H_{t}=\frac{\text {exp}\left( \int _{0}^{t}r_{s}ds\right) }{\eta _{t}}. \end{aligned}$$

Consequently, we get:

$$\begin{aligned} \ln H_{t}=\int _{0}^{t}r_{s}\,ds+\mathbf {M}_{t}+\int _{0}^{t}A(s)ds. \end{aligned}$$

Since \(\left( W^{r},W^{P},W^{S}\right) \) is a Gaussian process, we can deduce that \(\ln H_{t}\) is Gaussian itself. We have to determine its expectation and variance. More precisely, we determine the conditional expectations for powers z of \(\mathbb {E}_{t}\left[ \frac{ H_{T}^{z}}{H_{t}^{z}}\right] \). The ratio \(\frac{H_{T}^{z}}{H_{t}^{z}}\) satisfies:

$$\begin{aligned} \frac{H_{T}^{z}}{H_{t}^{z}}=\exp \left[ N_{z}(t,T)\right] , \end{aligned}$$

with

$$\begin{aligned} N_{z}(t,T)=z\left[ \int _{t}^{T}r_{s}ds+\mathbf {M}_{T}\mathbf {-M} _{t}+\int _{t}^{T}A(s)ds\right] . \end{aligned}$$

The process \(N_{z}(t,T)\) is Gaussian distributed. Thus, to determine \( \mathbb {E}_{t}\left[ \frac{H_{T}^{z}}{H_{t}^{z}}\right] \), we have just to compute \(\mathbb {E}_{t}\left[ N_{z}(t,T)\right] \) and \({ Var}_{t}\left[ N_{z}(t,T)\right] \), since we have:

$$\begin{aligned} \mathbb {E}_{t}\left[ \frac{H_{T}^{z}}{H_{t}^{z}}\right] =\exp \left[ \mathbb { E}_{t}\left[ N_{z}(t,T)\right] +\frac{1}{2}{} { Var}_{t}\left[ N_{z}(t,T)\right] \right] . \end{aligned}$$
  1. 1.

    Determination of \(\mathbb {E}_{t}\left[ N_{z}(t,T)\right] \). We have:

    $$\begin{aligned} \mathbb {E}_{t}\left[ N_{z}(t,T)\right] =z\left( \int _{t}^{T}\mathbb {E}_{t} \left[ r_{u}\right] \,du+\int _{t}^{T}A(s)ds\right) . \end{aligned}$$

    We deduce: for \(u>t\),

    $$\begin{aligned} \mathbb {E}_{t}\left[ r_{u}\right] =\overline{r}+(r_{t}-\overline{r} )e^{-(u-t)k_{r}}. \end{aligned}$$

    Finally, we get:

    $$\begin{aligned} \mathbb {E}_{t}\left[ N_{z}(t,T)\right] =z(T-t)\left( \overline{r}+ \left( r_{t}- \overline{r}\right) \frac{\beta _{r}(T-t)}{T-t}+\frac{1}{T-t}\int _{t}^{T}A(s)ds \right) , \end{aligned}$$

    which is equivalent to:

    $$\begin{aligned} \mathbb {E}_{t}\left[ N_{z}(t,T)\right] =z\Phi _{(t,T)}, \end{aligned}$$

    with:

    $$\begin{aligned} \Phi _{(t,T)}=(T-t)\left[ \overline{r}+(r_{t}-\overline{r})\frac{\beta _{r}(T-t)}{(T-t)}+\frac{1}{T-t}\int _{t}^{T}A(s)ds\right] . \end{aligned}$$
  2. 2.

    Determination of \({ Var}_{t}\left[ N_{z}(t,T)\right] \). Step 1: computation of \({ Var}_{t}\left[ \int _{t}^{T}r_{s}ds\right] \) - To calculate \( { Var}_{t}\left[ \int _{t}^{T}r_{s}ds\right] ,\) we use the Fubini’s property for stochastic integrals. We have:

    $$\begin{aligned} r_{t}= & {} \overline{r}+(r_{s}-\overline{r})e^{-(t-s)k_{r}}+a_{r}e^{-(t-s)k_{r}} \int _{s}^{t}e^{(u-s)k_{r}}dW_{u}^{r}.\\ \int _{t}^{T}r_{u}du= & {} \overline{r}(T-t)+(r_{t}-\overline{r})\beta _{r}(T-t)\\&+\int _{t}^{T}\left( a_{r}e^{-(u-t)k_{r}}\int _{t}^{u}e^{(v-t)k_{r}}dW_{v}^{r}\right) du. \end{aligned}$$

Then:

$$\begin{aligned} \int _{t}^{T}\left[ a_{r}e^{-(u-t)k_{r}}\int _{t}^{u}e^{(s-t)k_{r}}dW_{s}^{r} \right] du= & {} \int _{t}^{T}\left( \int _{s}^{T}a_{r}e^{-(u-t)k_{r}}e^{(s-t)k_{r}}du\right) dW_{s}^{r}, \\= & {} \int _{t}^{T}\left( a_{r}\left[ \frac{1-e^{-(T-s)k_{r}}}{k_{r}}\right] \right) dW_{s}^{r},\\ { Var}_{t}\left[ \int _{t}^{T}r_{s}\,ds\right]= & {} a_{r}^{2}\int _{t}^{T}\left[ \frac{1-e^{-(T-s)k_{r}}}{k_{r}}\right] ^{2}ds,\\ { Var}_{t}\left[ \int _{t}^{T}r_{s}\,ds\right]= & {} \frac{a_{r}^{2}}{k_{r}^{2}} \left[ \left( T-t\right) +\frac{1}{2k_{r}}\left[ 1-\exp (-2(T-t)k_{r})\right] -2\beta _{r}(T-t)\right] . \end{aligned}$$

Step 2: computation of \({ Var}_{t}\left[ \mathbf {M}_{T}\mathbf {-M}_{t}\right] \):

$$\begin{aligned} { Var}_{t}\left[ \mathbf {M}_{T}\mathbf {-M}_{t}\right] =2\int _{t}^{T}A(s)ds. \end{aligned}$$

Step 3: computation of \({ Cov}_{t}\left[ \int _{t}^{T}r_{s}\,ds;\mathbf {M} _{T}\mathbf {-M}_{t}\right] \):

$$\begin{aligned} { Cov}_{t}\left[ \int _{t}^{T}r_{s}\,ds;\mathbf {M}_{T}\mathbf {-M}_{t} \right] =\int _{t}^{T}a_{r}\left( \lambda _{r,s}+\lambda _{P,s}\rho ^{r,P}+\lambda _{S,s}\rho ^{r,S}\right) \left[ \frac{1-e^{-(T-s)k_{r}}}{k_{r} }\right] ds \end{aligned}$$

To conclude, recall that:

$$\begin{aligned} { Var}_{t}\left[ N_{z}(t,T)\right] = z^{2}\left( { Var}_{t}\left[ \int _{t}^{T}r_{s}\,ds\right] \,{+}\,{ Var}_{t}\left[ \mathbf {M}_{T}\mathbf {-M}_{t}\right] \,{+}\,2{ Cov}_{t}\left[ \int _{t}^{T}r_{s}\,ds,\,\mathbf {M}_{T}\mathbf {-M}_{t}\right] \right) . \end{aligned}$$

Therefore, we get:

$$\begin{aligned} { Var}_{t}\left[ N_{z}(t,T)\right] = z^{2}\left( \begin{array}{c} \frac{a_{r}^{2}}{k_{r}^{2}}\left[ \left( T-t\right) +\frac{1}{2k_{r}}\left[ 1-\exp (-2(T-t)k_{r})\right] -2\beta _{r}(T-t)\right] \\ +2\int _{t}^{T}A(s)ds+2\int _{t}^{T}a_{r}\left( \lambda _{r,,s}+\lambda _{P,s}\rho ^{r,P}+\lambda _{S,s}\rho ^{r,S}\right) \left[ \frac{ 1-e^{-(T-s)k_{r}}}{k_{r}}\right] ds \end{array} \right) . \end{aligned}$$

Appendix B: Optimal weights

In what follows, we consider the CRRA case. At time t, the optimal CRRA portfolio value is given by:

$$\begin{aligned} V_{T}^{{ CRRA}}=\left( \frac{V_{0}}{\mathbb {E}\left[ H_{T}^{\left( \frac{1-\gamma }{ \gamma }\right) }\right] }\right) H_{T}^{\left( \frac{1}{\gamma }\right) }. \end{aligned}$$
(34)

Denote

$$\begin{aligned} \widetilde{A}=\left( \frac{V_{0}}{\mathbb {E}\left[ H_{T}^{\left( \frac{1-\gamma }{\gamma }\right) }\right] }\right) . \end{aligned}$$

To compute the optimal weights \(x_{C},x_{B},x_{P},\) and \(x_{_{S}}\), first we calculate \(V_{t}^{{ CRRA}}\). We have:

$$\begin{aligned} V_{t}^{{ CRRA}}\frac{1}{H_{t}}=\mathbb {E}_{t}\left[ \frac{1}{H_{T}}V_{T}^{{ CRRA}} \right] =\widetilde{A}H_{t}^{\left( \frac{1}{\gamma }\right) }\mathbb {E}_{t}\left[ \left( H_{T}/H_{t}\right) ^{\left( \frac{1}{\gamma }-1\right) }\right] . \end{aligned}$$

which implies

$$\begin{aligned} V_{t}^{{ CRRA}}=\widetilde{A}H_{t}^{\left( \frac{1}{\gamma }\right) }\mathbb {E}_{t}\left[ \left( H_{T}/H_{t}\right) ^{z}\right] \quad \text {with}\quad z=\frac{1}{\gamma }-1. \end{aligned}$$

Using relation (25), we get:

$$\begin{aligned} V_{t}^{{ CRRA}}=\widetilde{A}H_{t}^{\left( \frac{1}{\gamma }\right) }\exp \left[ z\Phi _{(t,\,T)}+\frac{1}{2}z^{2}\Psi _{(0,\,T)}\right] \quad \text {with}\quad z=\frac{1}{ \gamma }-1. \end{aligned}$$

Then, we determine \(\frac{dV_{t}^{{ CRRA}}}{V_{t}^{{ CRRA}}}\) by using Relation (34). Applying Ito’s formula, we get the martingale part of \(\frac{ dV_{t}^{{ CRRA}}}{V_{t}^{{ CRRA}}}\):

$$\begin{aligned} dV_{t}^{{ CRRA}}= & {} (\ldots )dt \\&+\,\frac{1}{\gamma }V_{t}^{{ CRRA}}\left( \lambda _{r,t}dW_{t}^{r}+\lambda _{P,t}dW_{t}^{P}+\lambda _{S,t}dW_{t}^{S}\right) \\&+\,V_{t}^{{ CRRA}}z\left[ \beta _{r}a_{r}dW_{t}^{r}\right] \end{aligned}$$

We obtain the following system:

$$\begin{aligned} \left\{ \begin{array}{l} \frac{\lambda _{r,t}}{\gamma }+za_{r}\beta _{r}(T-t) =\delta _{r}(t)= -x_{B}(t)\beta _{r}(D_{B})a_{r} \\ \frac{\lambda _{P,t}}{\gamma } =\delta _{P}(t)= x_{P}(t)\sigma _{t}^{P} \\ \frac{\lambda _{S,t}}{\gamma } =\delta _{S}(t)= x_{S}(t)\sigma _{t}^{S} \end{array} \right. \end{aligned}$$

Therefore, we deduce that, at any time t, the weights are given by:

$$\begin{aligned} \left\{ \begin{array}{l} x_{B}^{{ CRRA}}(t) = -\frac{\delta _{i}(t)}{\beta _{i}(D)a_{i}} \\ x_{P}^{{ CRRA}}(t) = \frac{\delta _{P}(t)}{\sigma _{t}^{P}} \\ x_{S}^{{ CRRA}}(t) = \frac{\delta _{S}(t)}{\sigma _{t}^{S}} \\ x_{C}^{{ CRRA}}(t) = 1-x_{B}^{{ CRRA}}-x_{P}^{{ CRRA}}-x_{S}^{{ CRRA}} \end{array} \right. \end{aligned}$$

Recall that \(\Sigma \) is the matrix:

$$\begin{aligned} \Sigma =\left[ \begin{array}{c@{\quad }c@{\quad }c} -\beta _{r}(D_{B})a_{r} &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad \sigma _{t}^{P} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \sigma _{t}^{S} \end{array} \right] . \end{aligned}$$

We have:

$$\begin{aligned} \left[ \begin{array}{c} \frac{\lambda _{r,t}}{\gamma }+za_{r}\beta _{r}(T-t) \\ \frac{\lambda _{P}}{\gamma } \\ \frac{\lambda _{S}}{\gamma } \end{array} \right] ={^{t}\Sigma }\cdot \left[ \begin{array}{c} x_{B}^{{ CRRA}}(t) \\ x_{P}^{{ CRRA}}(t) \\ x_{S}^{{ CRRA}}(t) \end{array} \right] , \end{aligned}$$

thus:

$$\begin{aligned} \left[ \begin{array}{c} x_{B}^{{ CRRA}}(t) \\ x_{P}^{{ CRRA}}(t) \\ x_{S}^{{ CRRA}}(t) \end{array} \right] ={^{t}\Sigma ^{-1}}\cdot \left( \left[ \begin{array}{c} \frac{\lambda _{r,t}}{\gamma }+za_{r}\beta _{r}(T-t) \\ \frac{\lambda _{P,t}}{\gamma } \\ \frac{\lambda _{S,t}}{\gamma } \end{array} \right] \right) . \end{aligned}$$

Recall that \(z=\frac{1}{\gamma }-1\) and that the optimal portfolio for the logarithm case \(X^{{ Log}}\) is given by:

$$\begin{aligned} \left[ \begin{array}{c} x_{B}^{{ Log}}(t) \\ x_{P}^{{ Log}}(t) \\ x_{S}^{{ Log}}(t) \end{array} \right] ={^{t}\Sigma ^{-1}}\cdot \left( \left[ \begin{array}{c} \lambda _{r,t} \\ \lambda _{P,t} \\ \lambda _{S,t} \end{array} \right] \right) . \end{aligned}$$

Therefore, we have:

$$\begin{aligned} X^{{ CRRA}}=\frac{1}{\gamma }X^{{ Log}}+\left( 1-\frac{1}{\gamma }\right) X^{{ Conservative}}, \end{aligned}$$

where \(X^{{ Log}}\) is the optimal portfolio for the logarithm case, and \( X^{{ Conservative}}\) corresponds to the optimal portfolio for an infinite relative risk aversion \(\gamma \). This latter portfolio is given by:

$$\begin{aligned} \left[ \begin{array}{c} x_{B}^{{ Conservative}}(t) \\ x_{P}^{{ Conservative}}(t) \\ x_{S}^{{ Conservative}}(t) \end{array} \right] =\, ^{t}\Sigma ^{-1}\cdot \left( \left[ \begin{array}{c} -a_{r}\beta _{r}(T-t) \\ 0 \\ 0 \end{array} \right] \right) . \end{aligned}$$

Appendix C (Calibration)

In what follows, we detail how we can calibrate drifts, volatilities and instantaneous correlations of the Brownian motions to respectively expected returns per year, standard deviations per year and assets correlations.Footnote 15 Indeed, most of the empirical results about mean reverting asset returns are based on cumulated returns on given time periods [0, T] which are further annualized (see e.g. Campbell and Viceira 2002, 2005; Rehring 2012; Pagliari 2017). Using a continuous-time approach, we have to identify the parameters corresponding to instantaneous variations using those which correspond to annualized characteristics of cumulated returns.

In what follows, we consider two financial assets X and Y defined by:

$$\begin{aligned} dX_{t}= & {} X_{t}\left( \mu _{t}^{X}dt+\sigma _{t}^{X}dW_{t}^{X}\right) , \end{aligned}$$
(35)
$$\begin{aligned} dY_{t}= & {} Y_{t}\left( \mu _{t}^{Y}dt+\sigma _{t}^{Y}dW_{t}^{Y}\right) , \end{aligned}$$
(36)

where \(W_{t}=\left( W_{t}^{X},W_{t}^{Y}\right) _{1\le i\le d}\) is a 2-dimensional Brownian motion with correlation matrix \(\Sigma _{c,T}\) given by

$$\begin{aligned} \Sigma _{c,T}=\left[ \begin{array}{c@{\quad }c} 1 &{} \rho _{T}^{W^{X},W^{Y}} \\ \rho _{T}^{W^{X},W^{Y}} &{} 1 \end{array} \right] , \end{aligned}$$

where \(\rho _{T}^{W^{X},W^{Y}}=\left\langle W_{t}^{X},W_{t}^{Y}\right\rangle _{t}\) is a constant calibrated for a fixed management period [0, T]. Denote:

$$\begin{aligned} \Sigma _{t}=\left[ \begin{array}{c@{\quad }c} \sigma _{t}^{X} &{} 0 \\ 0 &{} \sigma _{t}^{Y} \end{array} \right] . \end{aligned}$$

1.1 Computation of expected returns and variances

Denote \( \theta _{t}^{X}=\mu _{t}^{X}-r_{t}\). The random variable \(X_{T}\) can be expressed as \(X_{T}=\exp \left[ N_{T}^{X}\right] \) where \(N_{T}^{X}\) has a Gaussian distribution with

$$\begin{aligned} \mathbb {E}\left[ N_{T}^{X}\right] =\Phi _{T}^{X}, \end{aligned}$$

where

$$\begin{aligned} \Phi _{T}^{X}=\left[ \overline{r}T+(r_{0}-\overline{r})\beta _{r}(T)+\int _{0}^{T}\left( \theta _{s}^{X}-\frac{1}{2}\left[ \sigma _{s}^{X} \right] ^{2}\right) ds\right] , \end{aligned}$$

and

$$\begin{aligned} { Var}\left[ N_{T}^{X}\right] =\Psi _{T}^{X}, \end{aligned}$$

with

$$\begin{aligned} \Psi _{T}^{X}= & {} \frac{a_{r}^{2}}{k_{r}^{2}}\left[ T+\frac{1}{2k_{r}}\left[ 1-\exp (-2Tk_{r})\right] -2\beta _{r}(T)\right] \\&+\int _{0}^{T}\left[ \sigma _{s}^{X}\right] ^{2}ds+2a_{r}\rho _{T}^{Wr,W^{X}}\int _{0}^{T}\sigma _{s}^{X}\left[ \frac{1-e^{-(t-s)k_{r}}}{ k_{r}}\right] ds \end{aligned}$$

Therefore, we have:

$$\begin{aligned} \mathbb {E}\left[ X_{T}\right] =X_{0}\exp \left[ \Phi _{T}^{X}+\frac{1}{2} \Psi _{T}^{X}\right] , \end{aligned}$$

and the variance is given by:

$$\begin{aligned} { Variance}\left[ X_{T}\right] =X_{0}^{2}\exp \left[ 2\Phi _{T}^{X}+\Psi _{T}^{X}\right] \left( \exp \left[ \Psi _{T}^{X}\right] -1\right) . \end{aligned}$$

1.2 Calibration to the given return per year g(T) and to the given standard deviation per year \(h\left( T\right) \)

We must have:

$$\begin{aligned}&\displaystyle \frac{1}{T}\exp \left[ \Phi _{T}^{X}+\frac{1}{2}\Psi _{T}^{X}\right] =g(T), \\&\displaystyle \frac{1}{T}\exp \left[ 2\Phi _{T}^{X}+\Psi _{T}^{X}\right] \left( \exp \left[ \Psi _{T}^{X}\right] -1\right) =h\left( T\right) , \end{aligned}$$

from which, we deduce:

$$\begin{aligned}&\displaystyle \Phi _{T}^{X} ={ Log}\left[ Tg(T)/\sqrt{1+\frac{h\left( T\right) }{Tg^{2}(T)}} \right] , \\&\displaystyle \Psi _{T}^{X} ={ Log}\left[ 1+\frac{h\left( T\right) }{Tg^{2}(T)}\right] . \end{aligned}$$

Therefore, we have:

$$\begin{aligned} \text {For all }\quad T,\,\frac{\partial \Phi _{T}^{X}}{\partial T}= & {} \frac{ \partial }{\partial T}{} { Log}\left[ Tg(T)/\sqrt{1+\frac{h\left( T\right) }{ Tg^{2}(T)}}\right] , \\ \frac{\partial \Psi _{T}^{X}}{\partial T}= & {} \frac{\partial }{\partial T}{} { Log} \left[ 1+\frac{h\left( T\right) }{Tg^{2}(T)}\right] . \end{aligned}$$

Consequently, we get a first relation:

$$\begin{aligned} \frac{\partial \Phi _{T}^{X}}{\partial T}= & {} \frac{\partial }{\partial T} \left[ \overline{r}T+(r_{0}-\overline{r})\beta _{r}(T)\right] +\left( \theta _{T}^{X}-\frac{1}{2}\left[ \sigma _{T}^{X}\right] ^{2}\right) , \\= & {} \frac{\partial }{\partial T}{} { Log}\left[ Tg(T)/\sqrt{1+\frac{h\left( T\right) }{Tg^{2}(T)}}\right] , \end{aligned}$$

which yields to:

$$\begin{aligned} \left( \theta _{T}^{X}-\frac{1}{2}\left[ \sigma _{T}^{X}\right] ^{2}\right) = \frac{\partial }{\partial T}{} { Log}\left[ Tg(T)/\sqrt{1+\frac{h\left( T\right) }{ Tg^{2}(T)}}\right] -\frac{\partial }{\partial T}\left[ \overline{r}T+(r_{0}- \overline{r})\beta _{r}(T)\right] \end{aligned}$$

To get the standard deviation, we use the following second relation:

$$\begin{aligned} \frac{\partial \Psi _{T}^{X}}{\partial T}= & {} \frac{\partial }{\partial T} \left( \frac{a_{r}^{2}}{k_{r}^{2}}\left[ T+\frac{1}{2k_{r}}\left[ 1-\exp (-2Tk_{r})\right] -2\beta _{r}(T)\right] \right) \\&+\left[ \sigma _{T}^{X}\right] ^{2}+2a_{r}\frac{\partial }{\partial T} \left( \rho _{T}^{Wr,W^{X}}\int _{0}^{T}\sigma _{s}^{X}\left[ \frac{ 1-e^{-(t-s)k_{r}}}{k_{r}}\right] ds\right) \\= & {} \frac{\partial }{\partial T}{} { Log}\left[ 1+\frac{h\left( T\right) }{Tg^{2}(T) }\right] \end{aligned}$$

Finally, we get:

$$\begin{aligned}&\left[ \sigma _{T}^{X}\right] ^{2}+2a_{r}\frac{\partial }{\partial T} \left( \rho _{T}^{Wr,W^{X}}\int _{0}^{T}\sigma _{s}^{X}\left[ \frac{ 1-e^{-(T-s)k_{r}}}{k_{r}}\right] ds\right) \\&\quad =\frac{\partial }{\partial T}{} { Log}\left[ 1+\frac{h\left( T\right) }{Tg^{2}(T) }\right] -\frac{\partial }{\partial T}\left( \frac{a_{r}^{2}}{k_{r}^{2}} \left[ T+\frac{1}{2k_{r}}\left[ 1-\exp (-2Tk_{r})\right] -2\beta _{r}(T) \right] \right) , \end{aligned}$$

where we have:

$$\begin{aligned}&\frac{\partial }{\partial T}\left( \rho _{T}^{Wr,W^{X}}\int _{0}^{T}\sigma _{s}^{X}\left[ \frac{1-e^{-(T-s)k_{r}}}{k_{r}}\right] ds\right) \\&\quad =\frac{\partial }{\partial T}\left( \rho _{T}^{Wr,W^{X}}\right) \int _{0}^{T}\sigma _{s}^{X}\left[ \frac{1-e^{-(T-s)k_{r}}}{k_{r}}\right] ds+\rho _{T}^{Wr,W^{X}}\frac{\partial }{\partial T}\left( \int _{0}^{T}\sigma _{s}^{X}\left[ \frac{1-e^{-(T-s)k_{r}}}{k_{r}}\right] ds\right) . \end{aligned}$$

1.3 Computation of covariances and correlations

In what follows, we search to calibrate the correlations of the three Brownian motions, namely the three parameters \({\rho }_{{T}}{^{r,\,P}}\), \({\rho }_{{T}}{^{r,\,S}}\) and \({\rho }_{{T}}{^{P,\,S}}\) to Rehring (2012) data (annualized correlations of cumulated asset returns). For this purpose, let us denote:

$$\begin{aligned} A_{t}= & {} E\left[ \int _{0}^{t}r_{s}ds\right] =\overline{r}t+(r_{0}-\overline{r })\beta _{r}(t); \\ B_{t}= & {} \frac{a_{r}^{2}}{k_{r}^{2}}\left[ t+\frac{1}{2k_{r}}\left[ 1-\exp (-2tk_{r})\right] -2\beta _{r}(t)\right] ; \\ C_{t}= & {} a_{r}\rho _{T}^{Wr,W^{X}}\int _{0}^{t}\sigma _{s}^{X}\left[ \frac{ 1-e^{-(t-s)k_{r}}}{k_{r}}\right] ds; \\ D_{t}= & {} a_{r}\rho _{T}^{Wr,W^{Y}}\int _{0}^{t}\sigma _{s}^{Y}\left[ \frac{ 1-e^{-(t-s)k_{r}}}{k_{r}}\right] ds. \end{aligned}$$

Taking account of the interest rate randomness, the covariance of asset prices X and Y is given by:

$$\begin{aligned} { Cov}_{T}^{X,Y}= & {} X_{0}Y_{0}\exp \left[ \int _{0}^{T}\left( \theta _{s}^{X}+\theta _{s}^{Y}\right) ds+\left( 2A_{T}+B_{T}+C_{T}+D_{T}\right) \right] \\&\times \left( \exp \left[ \int _{0}^{T}\sigma _{s}^{X}\sigma _{s}^{Y}\rho _{T}^{W^{X},W^{Y}}ds+\left( B_{T}+C_{T}+D_{T}\right) \right] -1\right) . \end{aligned}$$

Taking account of the interest rate randomness, the correlation \(\rho _{T}^{X,Y}\) of asset prices X and Y is given by:

$$\begin{aligned} \rho _{T}^{X,Y}={ Cov}_{T}^{X,Y}/\left( \sqrt{{ variance}\left( X_{T}\right) }\sqrt{ { variance}\left( Y_{T}\right) }\right) , \end{aligned}$$

which yields to:

$$\begin{aligned} \rho _{T}^{X,Y}= \frac{\exp \left[ \left( B_{T}+C_{T}+D_{T}\right) \right] \left( \exp \left[ \rho _{T}^{W^{X},W^{Y}}\int _{0}^{T}\sigma _{s}^{X}\sigma _{s}^{Y}ds+\left( B_{T}+C_{T}+D_{T}\right) \right] -1\right) }{\sqrt{\left( \exp \left[ \int _{0}^{T}\left[ \sigma _{s}^{X}\right] ^{2}ds\right] -1\right) }\sqrt{ \left( \exp \left[ \int _{0}^{T}\left[ \sigma _{s}^{Y}\right] ^{2}ds\right] -1\right) }}. \end{aligned}$$

Thus, we get:

$$\begin{aligned} \rho _{T}^{W^{X},W^{Y}}= & {} \frac{1}{\int _{0}^{T}\left( \sigma _{s}^{X}\sigma _{s}^{Y}\right) ds}\\&\times \left( \begin{array}{c} { Log}\left[ \begin{array}{c} 1+\rho _{T}^{X,Y}\exp \left[ -\left( B_{T}+C_{T}+D_{T}\right) \right] \\ \sqrt{\left( \exp \left[ \int _{0}^{T}\left[ \sigma _{s}^{X}\right] ^{2}ds \right] -1\right) }\sqrt{\left( \exp \left[ \int _{0}^{T}\left[ \sigma _{s}^{Y}\right] ^{2}ds\right] -1\right) } \end{array} \right] \\ -\left( B_{T}+C_{T}+D_{T}\right) \end{array} \right) . \end{aligned}$$

Note that, if \(r_{t}\) were deterministic, then we would have a special case with \(\mu _{s}^{X}=r_{s}+\theta _{s}^{X}\), \(\mu _{s}^{Y}=r_{s}+\theta _{s}^{Y}\) and \(B_{t}=C_{t}=D_{t}=0\). In such a case, the covariance of asset prices X and Y is given by:

$$\begin{aligned} \sigma _{T}^{X,Y}=X_{0}Y_{0}\exp \left[ \int _{0}^{T}\left( \mu _{s}^{X}+\mu _{s}^{Y}\right) ds\right] \left( \exp \left[ \rho _{T}^{W^{X},W^{Y}}\int _{0}^{T}\sigma _{s}^{X}\sigma _{s}^{Y}ds\right] -1\right) \end{aligned}$$

Therefore, for a fixed management period [0, T] and for a given correlation function \(\rho _{T}^{X,Y}\) defined by:

$$\begin{aligned} \rho _{T}^{X,Y}={ Cov}_{T}^{X,Y}/\left( \sqrt{{ variance}\left( X_{T}\right) }\sqrt{ { variance}\left( Y_{T}\right) }\right) , \end{aligned}$$

we find:

$$\begin{aligned} \rho _{T}^{X,Y}= \frac{\left( \exp \left[ \rho _{T}^{W^{X},W^{Y}}\int _{0}^{T}\sigma _{s}^{X}\sigma _{s}^{Y}ds\right] -1\right) }{\sqrt{\left( \exp \left[ \int _{0}^{T}\left[ \sigma _{s}^{X}\right] ^{2}ds\right] -1\right) }\sqrt{ \left( \exp \left[ \int _{0}^{T}\left[ \sigma _{s}^{Y}\right] ^{2}ds\right] -1\right) }}. \end{aligned}$$

Thus, we get:

$$\begin{aligned} \rho _{T}^{W^{X},W^{Y}}= & {} \frac{1}{\int _{0}^{T}\sigma _{s}^{X}\sigma _{s}^{Y}ds }\\&\times \,\, { Log}\left[ 1+\rho _{T}^{X,Y}\sqrt{\left( \exp \left[ \int _{0}^{T}\left[ \sigma _{s}^{X}\right] ^{2}ds\right] {-}1\right) }\sqrt{\left( \exp \left[ \int _{0}^{T}\left[ \sigma _{s}^{Y}\right] ^{2}ds\right] -1\right) }\right] . \end{aligned}$$

The previous formula can be applied not only to the real estate–stock case but also, when the bond is involved. However, as detailed in Sect. 2, the bond modelling is such that the term structure is affine (see Relation 7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amédée-Manesme, CO., Barthélémy, F., Bertrand, P. et al. Mixed-asset portfolio allocation under mean-reverting asset returns. Ann Oper Res 281, 65–98 (2019). https://doi.org/10.1007/s10479-018-2761-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2761-y

Keywords

Navigation