Skip to main content
Log in

Whittle indexability in egalitarian processor sharing systems

  • Feinberg: Probability
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The egalitarian processor sharing model is viewed as a restless bandit and its Whittle indexability is established. A numerical scheme for computing the Whittle indices is provided, along with supporting numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note that for finite systems i.e. when the number of jobs in any server is upper bounded so that any additional jobs that arrive are dropped, this assumption is not required. We will use this fact in simulations.

  2. In fact the claim/proof of the last claim extends to general admissible controls, though we won’t need it here.

  3. We shall implicitly use this fact in what follows whenever we invoke Lemma 2.

  4. Without the latter, it is unique for positive recurrent states up to an additive constant.

References

  • Aalto, S., Ayesta, U., Borst, S., Misra, V., & Núnez-Queija, R. (2007). Beyond processor sharing. ACM SIGMETRICS Performance Evaluation Review, 34(4), 36–43.

  • Agarwal, M., Borkar, V. S., & Karandikar, A. (2008). Structural properties of optimal transmission policies over a randomly varying channel. IEEE Transactions on Automatic Control, 53(6), 1476–1491.

    Article  Google Scholar 

  • Altman, E., Avrachenkov, K., & Ayesta, U. (2006). A survey on discriminatory processor sharing. Queueing Systems, 53(1—-2), 53–63.

    Article  Google Scholar 

  • Altman, E., Ayesta, U., & Prabhu, B. J. (2011). Load balancing in processor sharing systems. Telecommunication Systems, 47(1-2), 35–48.

    Article  Google Scholar 

  • Ansell, P. S., Glazebrook, K. D., & Kirkbride, C. (2003). Generalized ‘Join the shortest queue’ policies for the dynamic routing of jobs for multi-class queues. Journal of the Operational Research Society, 54(4), 379–389.

    Article  Google Scholar 

  • Archibald, T. W., Black, D. P., & Glazebrook, K. D. (2009). Indexability and index heuristics for a simple class of inventory routing problems. Operations Research, 57(2), 314–326.

    Article  Google Scholar 

  • Argon, N. T., Ding, L., Glazebrook, K. D., & Zia, S. (2009). Dynamic routing of customers with general delay costs in a multiserver queuing system. Probability in the Engineering and Informational Sciences, 23(12), 175–203.

    Article  Google Scholar 

  • Borkar, V. S. (1991). Topics in controlled Markov chains. Harlow: Longman Scientific & Technical.

    Google Scholar 

  • Borkar, V. S. (2000). Uniform stability of controlled Markov processes. In T. E. Djaferis & I. C. Schick (Eds.), System theory: Modeling, analysis and control (pp. 107–120). Norwell, MA: Kluwer Academic.

    Chapter  Google Scholar 

  • Borkar, V. S. (2002). Convex analytic methods in Markov decision processes. In A. Shwartz & E. Feinberg (Eds.), Handbook of Markov decision processes (pp. 347–375). Norwell, MA: Kluwer Academic.

    Chapter  Google Scholar 

  • Borkar, V. S., & Chadha, K. (2018) A reinforcement learning algorithm for restless bandits (submitted).

  • Borkar, V. S., Karumanchi, R., & Saboo, K. (2017). An index policy for dynamic pricing in cloud computing under price commitments. Applicationes Mathematicae (to appear).

  • Glazebrook, K. D., Kirkbride, C., & Ouenniche, J. (2009). Index policies for the admission control and routing of impatient customers to homogeneous service stations. Operations Research, 57(4), 975–989.

    Article  Google Scholar 

  • Jacko, P. (2010). Dynamic priority allocation in restless bandit models. Saarbrücken: Lambert Academic Publishing.

    Google Scholar 

  • Kijima, M. (1997). Markov processes for stochastic modeling. New York: Springer.

    Book  Google Scholar 

  • Kleinrock, L. (1967). Time-shared systems: A theoretical treatment. Journal of the ACM, 14(2), 242–261.

    Article  Google Scholar 

  • Larranäga, M., Ayesta, U., & Verloop, I. M. (2016). Dynamic control of birth-and-death restless bandits: Application to resource-allocation problems. IEEE/ACM Transactions on Networking, 24(6), 3812–3825.

    Article  Google Scholar 

  • Meyn, S. P., & Tweedie, R. L. (2012). Markov chains and stochastic stability (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Milgrom, P., & Segal, I. (2002). Envelope theorems for arbitrary choice sets. Econometrica, 70(2), 583–601.

    Article  Google Scholar 

  • Nain, P. (1989). Interchange arguments for classical scheduling problems in queues. Systems & Control Letters, 12(2), 177–184.

    Article  Google Scholar 

  • Nain, P., Tsoucas, P., & Walrand, J. (1989). Interchange arguments in stochastic scheduling. Journal of Applied Probability, 26, 815–826.

    Article  Google Scholar 

  • Ninõ-Mora, J. (2007a). Marginal productivity index policies for admission control and routing to parallel multi-server loss queues with reneging. In T. Chahed & B. Tuffin (Eds.), Proceedings of the international conference on network control and optimization, June 5–7, 2007, Avignon, France, Lecture Notes in Computer Science No. 4465 (pp. 138–149). Berlin: Springer.

  • Ninõ-Mora, J. (2007b). Characterization and computation of restless bandit marginal productivity indices. In Proceedings of the 2nd international conference on Performance evaluation methodologies and tools. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (ICST).

  • Ninõ-Mora, J. (2012a). Towards minimum loss job routing to parallel heterogeneous multiserver queues via index policies. European Journal of Operational Research, 220(3), 705–720.

    Article  Google Scholar 

  • Ninõ-Mora, J. (2012b). Admission and routing of soft real-time jobs to multi-clusters: Design and comparison of index policies. Computers & Operations Research, 39(12), 3431–3444.

    Article  Google Scholar 

  • Papadimitriou, C. H., & Tsitsiklis, J. N. (1999). The complexity of optimal queuing network control. Mathematics of Operations Research, 24(2), 293–305.

    Article  Google Scholar 

  • Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. New York: Wiley.

    Google Scholar 

  • Sznajder, R., & Filar, J. A. (1992). Some comments on a theorem of Hardy and Littlewood. Journal of Optimization Theory and Applications, 75(1), 201–208.

    Article  Google Scholar 

  • Whittle, P. (1988). Restless bandits: Activity allocation in a changing world. Journal of Applied Probability, 25, 287–298.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarath Pattathil.

Additional information

Research supported in part by CEFIPRA Project 5100-IT1.

Appendix

Appendix

Proof of Lemma 7

Recall that \(\xi \) is Bernoulli(p), D is the departure random variable which is distributed as \(D \sim \ Bin(x,\frac{q}{x})\) where x is the number of jobs currently in the server and q is the processing rate of the server. Consider the following:

$$\begin{aligned} f(x)&= \mathbb {E}_x[V(x - D + \xi )] - \mathbb {E}_x[V(x - D)] \\&= \sum _{d=0}^{x}{x \atopwithdelims ()d}\bigg (\frac{q}{x} \bigg )^d \bigg (1-\frac{q}{x} \bigg )^{x-d}(pV(x+1-d) + (1-p)V(x-d) - V(x-d))\\&= \sum _{d=0}^{x}{x \atopwithdelims ()d}\bigg (\frac{q}{x} \bigg )^d \bigg (1-\frac{q}{x} \bigg )^{x-d}(p(V(x+1-d) - V(x-d)))\\ \end{aligned}$$

For an optimal policy to be a threshold policy, we need \(f(x+d) \ge f(x)\) for \(d>0\). Therefore it is sufficient to show that \(f(x+1) - f(x) > 0\). We have:

$$\begin{aligned} f(x+1)&= \sum _{d=0}^{x+1}{x+1 \atopwithdelims ()d}\bigg (\frac{q}{x+1} \bigg )^d \bigg (1-\frac{q}{x+1} \bigg )^\text {x+1-d}\\&\quad \times (p(V(x+2-d) - V(x+1-d))). \end{aligned}$$

Consider the following bound for f(x):

$$\begin{aligned} f(x)&\le \sum _{d=0}^{x}{x \atopwithdelims ()d}\bigg (\frac{q}{x+1} \bigg )^d \bigg (1-\frac{q}{x+1} \bigg )^{x-d}(p(V(x+1-d) - V(x-d))). \end{aligned}$$

This is true because the departure probability stochastically decreases as x increases. Since \((V(x+1-d) - V(x-d))\) decreases as d increases by Lemma 6, the bound follows by stochastic dominance.

Now we look at the difference

$$\begin{aligned} f(x+1) - f(x)&= \sum _{d=0}^{x}{x+1 \atopwithdelims ()d+1}\bigg (\frac{q}{x+1} \bigg )^\text {d+1} \bigg (1-\frac{q}{x+1} \bigg )^{x-d}\\&\quad \times p(V(x+1-d) - V(x-d))\\&\quad - {x \atopwithdelims ()d}\bigg (\frac{q}{x} \bigg )^d \bigg (1-\frac{q}{x} \bigg )^{x-d}p(V(x+1-d) - V(x-d)) \\&\quad + \bigg (1 - \frac{q}{x+1} \bigg )^\text {x+1} p(V(x+2) -V(x+1))\\&\ge \bigg (1 - \frac{q}{x+1} \bigg )^\text {x+1} p(V(x+2) -V(x+1))\\&\quad + p\sum _{d=0}^{x}{x \atopwithdelims ()d} \bigg ( \frac{q}{x+1} \bigg )^d \bigg (1-\frac{q}{x+1} \bigg )^{x-d}\\&\quad \times \bigg (\frac{x+1}{d+1} \frac{q}{x+1} -1\bigg )(V(x+1-d) - V(x-d)). \end{aligned}$$

Let \(q_x = \frac{q}{x+1}\). Then we have

$$\begin{aligned} f(x+1) - f(x)&\ge \big (1 - q_x \big )^\text {x+1} p (V(x+2) -V(x+1))\\&\quad + p\sum _{d=0}^{x}{x \atopwithdelims ()d} \big ( q_x \big )^d \big (1-q_x \big )^{x-d}\\&\quad \times \bigg (\frac{x+1}{d+1} q_x -1\bigg )(V(x+1-d) - V(x-d)). \\ \end{aligned}$$

Let \(B(x) = p(V(x+1) - V(x))\). From the Lemma 6, we know that B(.) is a non-decreasing function. The above inequality can be rewritten as

$$\begin{aligned} f(x+1) - f(x)&\ge \big (1 - q_x \big )^\text {x+1}B(x+1)\\&\quad + \sum _{d=0}^{x}{x \atopwithdelims ()d} \big ( q_x \big )^d \big (1-q_x \big )^{x-d} \bigg (\frac{x+1}{d+1} q_x -1\bigg )B(x-d). \\ \end{aligned}$$

We simplify the expression as follows:

$$\begin{aligned}&f(x+1) - f(x) \nonumber \\&\ge \big (1 - q_x \big )^\text {x+1}B(x+1) + \sum _{d=0}^{x}{x \atopwithdelims ()d} \big ( q_x \big )^d \big (1-q_x \big )^{x-d} \nonumber \\&\quad \times \bigg (\frac{x+1}{d+1} q_x -1\bigg )B(x-d) \nonumber \\&= (1-q_x)^{x+1} B(x+1) - q_x^x(1-q_x)B(0) \nonumber \\&\quad + \sum _{d=0}^{x-1} {x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x-d} \left( \frac{x+1}{d+1}q_x - 1 \right) B(x-d) \end{aligned}$$
(15)
$$\begin{aligned}&= (1-q_x)^{x+1} B(x+1) - q_x^x(1-q)B(0) \ \nonumber \\&\quad + \sum _{d=0}^{x-1} \left( {x \atopwithdelims ()d+1} q_x^{d+1} (1-q_x)^{x-d} - {x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x+1-d} \right) B(x-d) \\&= \left\{ (1-q_x)^{x+1} B(x+1) + \sum _{d=0}^{x-1}{x \atopwithdelims ()d+1} q_x^{d+1} (1-q_x)^{x-d}B(x-d)\right\} \nonumber \\&\quad - \left\{ q_x^x(1-q_x)B(0) + \sum _{d=0}^{x-1}{x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x+1-d}B(x-d) \right\} \nonumber \\&= \left\{ (1-q_x)^{x+1} B(x+1) + \sum _{d=1}^{x}{x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x+1-d}B(x+1-d)\right\} \nonumber \\&\quad - \sum _{d=0}^{x}{x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x+1-d}B(x-d)\nonumber \\&= \sum _{d=0}^{x}{x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x+1-d}B(x+1-d) - \sum _{d=0}^{x}{x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x+1-d}B(x-d) \nonumber \\&= (1-q_x) \sum _{d=0}^{x}{x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x-d} \left( B(x+1-d) - B(x-d) \right) \nonumber \\&\ge 0.\nonumber \end{aligned}$$
(16)

The passage from (15) to (16) is given in Borkar et al. (2017). The proof has been reproduced below for sake of completeness. We have proved that

$$\begin{aligned} f(x+1) - f(x) \ge 0, \end{aligned}$$

which shows that the optimal policy is a threshold policy. \(\square \)

Proof of term in (15) to (16)

From (15), we have:

$$\begin{aligned}&{x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x-d} \left( \frac{(x+1)q_x}{d+1} - 1 \right) \\&\quad = {x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x-d} \left( \frac{(x+1)q_x \pm q_xd}{d+1} - 1 \right) \\&\quad = {x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x-d} \left( \frac{(x-d)q_x + (d+1)q_x}{d+1} - 1 \right) \\&\quad = {x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x-d} \left( \frac{(x-d)q_x}{d+1} - 1 + q_x \right) \\&\quad = {x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x-d} \left( \frac{(x-d)q_x}{d+1} - (1 - q_x) \right) \\&\quad = {x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x-d} \frac{(x-d)q_x}{d+1} \\&\qquad - {x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x-d}(1 - q_x) \\&\quad = \frac{x!}{(x-d)! d!} \frac{(x-d)}{d+1} q_x^{d+1} (1-q_x)^{x-d} \\&\qquad - {x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x+1-d} \\&\quad = \frac{x!}{(x-d-1)! (d+1)!} q_x^{d+1} (1-q_x)^{x-d} \\&\qquad - {x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x+1-d} \\&\quad = {x \atopwithdelims ()d+1} q_x^{d+1} (1-q_x)^{x-d} \\&\qquad - {x \atopwithdelims ()d} q_x^{d} (1-q_x)^{x+1-d} \end{aligned}$$

The term on the right hand side of the final step is the desired term in (16). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borkar, V.S., Pattathil, S. Whittle indexability in egalitarian processor sharing systems. Ann Oper Res 317, 417–437 (2022). https://doi.org/10.1007/s10479-017-2622-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2622-0

Keywords

Navigation