Skip to main content
Log in

Cooperative oligopoly games with boundedly rational firms

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We analyze cooperative Cournot games with boundedly rational firms. Due to cognitive constraints, the members of a coalition cannot accurately predict the coalitional structure of the non-members. Thus, they compute their value using simple heuristics. In particular, they assign various non-equilibrium probability distributions over the outsiders’ set of partitions. We construct the characteristic function of a coalition in such an environment and we analyze the core of the corresponding games. We show that the core is non-empty provided the number of firms in the market is sufficiently large. Moreover, we show that if two distributions over the set of partitions are related via first-order dominance, then the core of the game under the dominated distribution is a subset of the core under the dominant distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Clearly the best replies depend on the quantities of the opponents but for notational simplicity we drop writing them.

  2. See Amir and Lambson (2000).

  3. For \(3\le n\le 11\) it holds that \(v^n(1)>\frac{v^n(n)}{n}\) (see Table 3 in the Appendix). The relevant calculations were made using the Maple program and they are available by the authors upon request.

  4. We thank an anonymous referee for pointing out this connection.

References

  • Acerbi, C. (2002). Spectral measures of risk: A coherent representation of subjective risk aversion. Journal of Banking & Finance, 26, 1505–1518.

    Article  Google Scholar 

  • Amir, R., & Lambson, V. E. (2000). On the effects of entry in Cournot markets. Review of Economic Studies, 67, 235–254.

    Article  Google Scholar 

  • Anderson, S., & Engers, M. P. (1992). Stackelberg versus Cournot oligopoly equilibrium. International Journal of Industrial Organization, 10, 127–135.

    Article  Google Scholar 

  • Anderson, S., Goeree, J. K., & Holt, C. A. (2002). The logit equilibrium: A perspective on intuitive behavioral anomalies. Southern Economic Journal, 69, 21–47.

    Article  Google Scholar 

  • Aumann, R. (1959). Acceptable points in general cooperative n-person games, contributions to the theory of games IV, annals of mathematics studies (Vol. 40). Princeton: Princeton University Press.

    Google Scholar 

  • Bell, E. T. (1934). Exponential numbers. American Mathematical Monthly, 41, 411–419.

    Article  Google Scholar 

  • Camerer, C. (2003). Behavioral studies of strategic thinking in games. Trends in Cognitive Sciences, 7, 225–231.

    Article  Google Scholar 

  • Camerer, C., Ho, T.-H., & Chong, J.-K. (2004). A cognitive hierarchy model of games. Quarterly Journal of Economics, 119, 861–898.

    Article  Google Scholar 

  • Chander, P. (2010). Cores of games with positive externalities. CORE Discussion Paper.

  • Chander, P., & Tulkens, H. (1997). A core of an economy with multilateral environmental externalities. International Journal of Game Theory, 26, 379–401.

    Article  Google Scholar 

  • Chen, H. C., Friedman, J., & Thisse, J. F. (1997). Boundedly rational Nash equilibrium: A probabilistic choice approach. Games and Economic Behavior, 18, 32–54.

    Article  Google Scholar 

  • Currarini, S., & Marini, M. (2003). A sequential approach to the characteristic function and the core in games with externalities. In M. Sertel & A. Kara (Eds.), Advances in Economic Design. Berlin: Springer Verlag.

    Google Scholar 

  • Dang, V. D., & Jennings, N.R. (2004). Generating coalition structures with finite bound from the optimal guarantees. In 3rd International Conference on Autonomous Agents and Multi-Agent Systems (pp. 564–571). New York.

  • Hart, S., & Kurz, M. (1983). Endogenous formation of coalitions. Econometrica, 52, 1047–1064.

    Article  Google Scholar 

  • Haruvy, E., & Stahl, D. (2007). Equilibrium selection and bounded rationality in symmetric normal form games. Journal of Economic Behavior and Organization, 62, 98–119.

    Article  Google Scholar 

  • Huang, C.Y., & Sjostrom, T. (1998). The \(p\)-core, Working Paper.

  • Huang, C. Y., & Sjostrom, T. (2003). Consistent solutions for cooperative games with externalities. Games and Economic Behavior, 43, 196–213.

    Article  Google Scholar 

  • Koczy, L. (2007). A recursive core for partition function form games. Theory and Decision, 63, 41–51.

    Article  Google Scholar 

  • McKelvey, R., & Palfrey, T. R. (1995). Quantal response equilibria for normal form games. Games and Economic Behavior, 10, 6–38.

    Article  Google Scholar 

  • Rajan, R. (1989). Endogenous coalition formation in cooperative oligopolies. International Economic Review, 30, 863–876.

    Article  Google Scholar 

  • Ray, D., & Vohra, R. (1999). A theory of endogenous coalition structures. Games and Economic Behavior, 26, 286–336.

    Article  Google Scholar 

  • Sandholm, T., Larson, K., Andersson, M., Shehory, O., & Tohmé, F. (1999). Coalition structure generation with worst case guarantees. Artificial Intelligence, 111, 209–238.

    Article  Google Scholar 

  • Stahl, D., & Wilson, P. (1994). On players’ models of other players: Theory and experimental evidence. Games and Economic Behavior, 10, 218–254.

    Article  Google Scholar 

  • Vives, X. (2001). Oligopoly Pricing: Old ideas and new tools. Cambridge, MA: MIT Press.

    Google Scholar 

  • Zhao, J. (1999). A \(\beta \)-core existence result and its application to oligopoly markets. Games and Economic Behavior, 27, 153–168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgos Stamatopoulos.

Appendix

Appendix

Lemma A1

Assume the demand function is \(Q=1-p^b\). Then the characteristic function is given by (13).

Proof

The profit function of coalition \(i\) under a partition with \(j\) members is

$$\begin{aligned} \pi _i^j=\left( 1-q_s-\sum \limits _{r=1, r\ne i}^j q_r^j-q_i^j\right) ^{\frac{1}{b}}q_i^j, \quad i=1,2,...,j \end{aligned}$$
(23)

Note that

$$\begin{aligned} \frac{\partial {\pi _i^j}}{\partial {q_i^j}}=0\Leftrightarrow b\left( 1-q_s-q_i^j-\sum \limits _{r=1, r\ne i}^j q_r^j\right) =q_i^j \end{aligned}$$
(24)

By symmetry, all \(j\) outside coalitions produce the same. So let \(q_r^j=q_i^j\), for all \(r\). Therefore by (24), \(b(1-q_s-jq_i^j)=q_i^j\) and hence

$$\begin{aligned} \tilde{q}_i^j=\frac{b(1-q_s)}{bj+1} \end{aligned}$$
(25)

The objective function of the deviant coalition \(S\) is

$$\begin{aligned} \pi _f(S)= \sum \limits _{j=1}^{n-s}f_{n,s}(j) \left( 1-q_s-\sum \limits _{i=1}^j q_i^j\right) ^{\frac{1}{b}}q_s \end{aligned}$$
(26)

Note that \({\displaystyle {\frac{\partial {\pi _f(S)}}{\partial {q_s}}=0}}\) if

$$\begin{aligned} \sum \limits _{j=1}^{n-s}f_{n,s}(j)\left( 1-q_s-\sum _{i=1}^jq_i^j\right) ^{\frac{1}{b}}= \frac{1}{b}\sum \limits _{j=1}^{n-s}f_{n,s}(j)\left( 1-q_s- \sum _{i=1}^jq_i^j\right) ^{\frac{1}{b}-1}q_s \end{aligned}$$
(27)

Using (25), (27) becomes

$$\begin{aligned} \sum \limits _{j=1}^{n-s}f_{n,s}(j)\left( \frac{1-q_s}{1+bj}\right) ^{\frac{1}{b}}= \frac{1}{b}\sum \limits _{j=1}^{n-s}f_{n,s}(j)\left( \frac{1-q_s}{1+bj}\right) ^{\frac{1}{b}-1}q_s \end{aligned}$$

and hence

$$\begin{aligned} (1-q_s)^{\frac{1}{b}}\sum \limits _{j=1}^{n-s}f_{n,s}(j)\left( \frac{1}{1+bj}\right) ^{\frac{1}{b}}= \frac{1}{b}(1-q_s)^{\frac{1}{b}-1}\sum \limits _{j=1}^{n-s}f_{n,s}(j)\left( \frac{1}{1+bj}\right) ^{\frac{1}{b}-1}q_s \end{aligned}$$

Define \({\displaystyle {\psi _j=\frac{1}{bj+1}.}}\) Then rearranging the above relation gives

$$\begin{aligned} q_s\left( \sum \limits _{j=1}^{n-s}f_{n,s}(j)\psi _j^{\frac{1}{b}} +\frac{1}{b}\sum \limits _{j=1}^{n-s}f_{n,s}(j)\psi _j^{\frac{1}{b}-1}\right) = \sum \limits _{j=1}^{n-s}f_{n,s}(j)\psi _j^{\frac{1}{b}} \end{aligned}$$
(28)

Notice that

$$\begin{aligned}&\sum \limits _{j=1}^{n-s}f_{n,s}(j)\psi _j^{\frac{1}{b}} +\frac{1}{b}\sum \limits _{j=1}^{n-s}f_{n,s}(j)\psi _j^{\frac{1}{b}-1}= \sum \limits _{j=1}^{n-s}f_{n,s}(j)\psi _j^{\frac{1}{b}}\left( 1+\frac{1}{b\psi _j}\right) \nonumber \\&\qquad =\sum \limits _{j=1}^{n-s}f_{n,s}(j)\psi _j^{\frac{1}{b}}(1+(bj+1)/b)= \sum \limits _{j=1}^{n-s}f_{n,s}(j)\psi _j^{\frac{1}{b}}(1+j+1/b) \end{aligned}$$
(29)

Using (28) and (29) we get

$$\begin{aligned} q_s(f)=\frac{\sum \limits _{j=1}^{n-s}f_{n,s}(j)\psi _j^{\frac{1}{b}}}{\sum \limits _{j=1}^{n-s}f_{n,s}(j)\psi _j^{\frac{1}{b}}(1+j+1/b)} \end{aligned}$$
(30)

Using (30), (25) becomes

$$\begin{aligned} q_i^j(f)=b\psi _j\frac{\sum \limits _{j=1}^{n-s}\psi _j^ {\frac{1}{b}}(j+1/b)}{\sum \limits _{j=1}^{n-s}f_{n,s}(j)\psi _j^{\frac{1}{b}}(1+j+1/b)} \end{aligned}$$
(31)

Plugging (30) and (31) in (26) gives us (13). \(\square \)

Lemma A2

Assume the inverse demand \(p(Q)\) is weakly concave. Then \(Q_{j}^{-s}(w)< Q_j^{-s}(z)\), \(j=1,2,...,n-s\).

Proof

Fix \(Q_j^{-s}\). For notational convenience, define \(F(q_s)\equiv \sum \limits _{j=1}^{n-s}w_{n,s}(j)\pi _s(q_s,Q_j^{-s})\) and \(H(q_s)\equiv \sum \limits _{j=1}^{n-s}z_{n,s}(j)\pi _s(q_s,Q_j^{-s})\). Then \(\tilde{q}_s(w)\) and \(\tilde{q}_s(z)\) satisfy respectively the first-order conditions \({\displaystyle {\frac{\partial {F(q_s)}}{\partial {q_s}}=0}}\) and \({\displaystyle {\frac{\partial {H(q_s)}}{\partial {q_s}}=0}}\) or equivalently

$$\begin{aligned} \sum \limits _{j=1}^{n-s}w_{n,s}(j)p'\left( q_s+Q_{j}^{-s}\right) q_s+ \sum \limits _{j=1}^{n-s}w_{n,s}(j)p\left( q_s+Q_{j}^{-s}\right) -c=0 \end{aligned}$$
(32)

and

$$\begin{aligned} \sum \limits _{j=1}^{n-s}z_{n,s}(j)p'\left( q_s+Q_{j}^{-s}\right) q_s+ \sum \limits _{j=1}^{n-s}z_{n,s}(j)p\left( q_s+Q_{j}^{-s}\right) -c=0 \end{aligned}$$
(33)

The function \(F(q_s)\) is strictly concave in \(q_s\) (by assumptions A1-A3). Hence \(\tilde{q}_s(w)>\tilde{q}_s(z)\) if and only if \({\displaystyle {\frac{\partial {F(\tilde{q}_s(z))}}{\partial {q_s}}>0}}\). By (32) we have that

$$\begin{aligned} \frac{\partial {F(\tilde{q}_s(z))}}{\partial {q_s}}\!>\!0\!\Leftrightarrow \! \sum \limits _{j=1}^{n-s}w_{n,s}(j)p'\left( \tilde{q}_s(z)\!+\!Q_{j}^{-s}\right) \tilde{q}_s(z)+\sum \limits _{j=1}^{n-s}w_{n,s}(j)p\left( \tilde{q}_s(z)\!+\!Q_{j}^{-s}\right) \!-\!c\!>\!0\nonumber \\ \end{aligned}$$
(34)

Solving for \(\tilde{q}_s(z)\) by (33) and plugging in (34) we have that

$$\begin{aligned} \frac{\partial {F(\tilde{q}_s(z))}}{\partial {q_s}}>0&\Leftrightarrow \frac{\sum \limits _{j=1}^{n-s}w_{n,s}(j)p'\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) }{-\sum \limits _{j=1}^{n-s}z_{n,s}(j)p'\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) } \left( \sum \limits _{j=1}^{n-s}z_{n,s}(j)p\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) -c\right) \nonumber \\&\,\,+\,\,\sum \limits _{j=1}^{n-s}w_{n,s}(j)p\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) -c>0 \end{aligned}$$
(35)

We now use the concavity assumption and claim that

$$\begin{aligned} \frac{\sum \limits _{j=1}^{n-s}w_{n,s}(j)p'\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) }{- \sum \limits _{j=1}^{n-s}z_{n,s}(j)p'\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) }\ge -1 \end{aligned}$$
(36)

To show the above we can equivalently show

$$\begin{aligned} \sum \limits _{j=1}^{n-s}w_{n,s}(j)p'\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) - \sum \limits _{j=1}^{n-s}z_{n,s}(j)p'\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) \ge 0 \end{aligned}$$
(37)

We have

$$\begin{aligned}&\sum \limits _{j=1}^{n-s}w_{n,s}(j)p'\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) - \sum \limits _{j=1}^{n-s}z_{n,s}(j)p'\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) \\&\quad =\left( w_{n,s}(1)-z_{n,s}(1)\right) p'\left( \tilde{q}_s(z)+Q_1^{-s}\right) +\sum \limits _{j=2}^{n-s}\left( w_{n,s}(j)- z_{n,s}(j)\right) p'\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) \\&\quad \ge \left( w_{n,s}(1)-z_{n,s}(1)\right) p'\left( \tilde{q}_s(z)+Q_2^{-s}\right) +\sum \limits _{j=2}^{n-s}\left( w_{n,s}(j)- z_{n,s}(j)\right) p'\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) \end{aligned}$$

where the inequality holds because \(w_{n,s}(1)-z_{n,s}(1)\ge 0\) and because the weak concavity of price implies that \(p'\left( \tilde{q}_s(z)+Q_{1}^{-s}\right) \ge p'\left( \tilde{q}_s(z)+Q_{2}^{-s}\right) \) (recall that \(Q_1^{-s}<Q_{2}^{-s}).\) If we continue the process of iterating \(j\), we end up with (37). Since the latter condition holds, we have that

$$\begin{aligned}&\frac{\sum \limits _{j=1}^{n-s}w_{n,s}(j)p'\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) }{-\sum \limits _{j=1}^{n-s}z_{n,s}(j)p'\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) } \left( \sum \limits _{j=1}^{n-s}z_{n,s}(j)p\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) -c\right) \nonumber \\&\qquad +\,\,\sum \limits _{j=1}^{n-s}w_{n,s}(j)p\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) -c\nonumber \\&\quad \ge -\left( \sum \limits _{j=1}^{n-s}z_{n,s}(j)p\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) -c\right) + \sum \limits _{j=1}^{n-s}w_{n,s}(j)p\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) -c\nonumber \\&\quad =\sum \limits _{j=1}^{n-s}w_{n,s}(j)p\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) -\sum \limits _{j=1}^{n-s}z_{n,s}(j)p\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) \end{aligned}$$
(38)

But expression (38) can be written as

$$\begin{aligned}&\big (w_{n,s}(1)-z_{n,s}(1)\big )p\left( \tilde{q}_s(z)+Q_1^{-s}\right) + \sum \limits _{j=2}^{n-s}\big (w_{n,s}(j)-z_{n,s}(j)\big )p\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) \\&\quad >\big (w_{n,s}(1)-z_{n,s}(1)\big )p(\tilde{q}_s(z)+Q_2^{-s})+ \sum \limits _{j=2}^{n-s}\big (w_{n,s}(j)-z_{n,s}(j)\big )p\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) \end{aligned}$$

where the last inequality holds because \(Q_1^{-s}<Q_2^{-s}\). Continuing the iterations on \(j\), we end up with

$$\begin{aligned} \sum \limits _{j=1}^{n-s}w_{n,s}(j)p\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) - \sum \limits _{j=1}^{n-s}z_{n,s}(j)p\left( \tilde{q}_s(z)+Q_{j}^{-s}\right) >0 \end{aligned}$$
(39)

Combining (35), (38) and (39) we conclude that \({\displaystyle {\frac{\partial {F(\tilde{q}_s(z))}}{\partial {q_s}}>0}}\) and hence \(\tilde{q}_s(w)>\tilde{q}_s(z).\) But then \(Q_{j}^{-s}(w)<Q_j^{-s}(z)\), since \(Q_j^{-s}(w)\) and \(Q_j^{-s}(z)\) emerge from \(\tilde{Q}_j^{-s}\) for \(q_s=\tilde{q}_s(w)\) and \(q_s=\tilde{q}_s(z)\) respectively and commodities in a Cournot market are substitutes. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekeas, P.V., Stamatopoulos, G. Cooperative oligopoly games with boundedly rational firms. Ann Oper Res 223, 255–272 (2014). https://doi.org/10.1007/s10479-014-1580-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1580-z

Keywords

JEL Classification

Navigation