Skip to main content
Log in

The smoothing effect in sharp Gevrey space for the spatially homogeneous non-cutoff Boltzmann equations with a hard potential

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L2 weighted estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre R, Desvillettes L, Villani C, Wennberg B. Entropy dissipation and long-range interactions. Arch Ration Mech Anal, 2000, 152: 327–355

    Article  MathSciNet  Google Scholar 

  2. Alexandre R, Hérau F, Li W X. Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff. J Math Pures Appl, 2019, 126(9): 1–71

    Article  MathSciNet  Google Scholar 

  3. Alexandre R, Morimoto Y, Ukai S, et al. Regularizing effect and local existence for the non-cutoff Boltzmann equation. Arch Ration Mech Anal, 2010, 198: 39–123

    Article  MathSciNet  Google Scholar 

  4. Alexandre R, Morimoto Y, Ukai S, et al. The Boltzmann equation without angular cutoff in the whole space: qualitative properties of solutions. Arch Ration Mech Anal, 2011, 202: 599–661

    Article  MathSciNet  Google Scholar 

  5. Alexandre R, Morimoto Y, Ukai S, et al. The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential. J Funct Anal, 2012, 262: 915–1010

    Article  MathSciNet  Google Scholar 

  6. Alexandre R, Morimoto Y, Ukai S, et al. Local existence with mild regularity for the Boltzmann equation. Kinet Relat Models, 2013, 6: 1011–1041

    Article  MathSciNet  Google Scholar 

  7. Alexandre R, Safadi M. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations I: Non-cutoff case and Maxwellian molecules. Math Models Methods Appl Sci, 2005, 15: 907–920

    Article  MathSciNet  CAS  Google Scholar 

  8. Alexandre R, Safadi M. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations II: Non cutoff case and non Maxwellian molecules. Discrete Contin Dyn Syst, 2009, 24: 1–11

    Article  MathSciNet  Google Scholar 

  9. Barbaroux J M, Hundertmark D, Ried T, Vugalter S. Gevrey smoothing for weak solutions of the fully nonlinear homogeneous boltzmann and kac equations without cutoff for maxwellian molecules. Archive for Rational Mechanics and Analysis, 2017, 225: 601–661

    Article  MathSciNet  ADS  Google Scholar 

  10. Cao H, Li W X, Xu C J. Analytic smoothing effect of the spatially inhomogeneous Landau equations for hard potentials. J Math Pures Appl, 2023, 176: 138–182

    Article  MathSciNet  Google Scholar 

  11. Chen H, Hu X, Li W X, Zhan J. The Gevrey smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off. Sci China Math, 2022, 65: 443–470

    Article  MathSciNet  Google Scholar 

  12. Chen H, Li W X, Xu C J. Analytic smoothness effect of solutions for spatially homogeneous Landau equation. J Differential Equations, 2010, 248: 77–94

    Article  MathSciNet  ADS  Google Scholar 

  13. Chen Y, He L. Smoothing estimates for Boltzmann equation with full-range interactions: spatially homogeneous case. Arch Ration Mech Anal, 2011, 201: 501–548

    Article  MathSciNet  Google Scholar 

  14. Desvillettes L. About the regularizing properties of the non-cut-off Kac equation. Comm Math Phys, 1995, 168: 417–440

    Article  MathSciNet  ADS  Google Scholar 

  15. Desvillettes L. Regularization properties of the 2-dimensional non-radially symmetric non-cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules. Transport Theory Statist Phys, 1997, 26: 341–357

    Article  MathSciNet  CAS  ADS  Google Scholar 

  16. Desvillettes L, Wennberg B. Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff. Comm Partial Differential Equations, 2004, 29: 133–155

    Article  MathSciNet  Google Scholar 

  17. Duan W X, Li W X, Liu L. Gevrey regularity of mild solutions to the non-cutoff boltzmann equation. Advances in Mathematics, 2022, 395: 1–75

    Article  MathSciNet  Google Scholar 

  18. Duan R, Liu S, Sakamoto S, Strain R M. Global mild solutions of the Landau and non-cutoff Boltzmann equations. Comm Pure Appl Math, 2021, 74: 932–1020

    Article  MathSciNet  Google Scholar 

  19. Gressman P T, Strain R M. Global classical solutions of the Boltzmann equation without angular cut-off. J Amer Math Soc, 2011, 24: 771–847

    Article  MathSciNet  Google Scholar 

  20. Gressman P T, Strain R M. Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production. Adv Math, 2011, 227: 2349–2384

    Article  MathSciNet  Google Scholar 

  21. Hörmander L. The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Berlin: Springer-Verlag, 1985

    Google Scholar 

  22. Huo Z, Morimoto Y, Ukai S, Yang T. Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinet Relat Models, 2008, 1: 453–489

    Article  MathSciNet  Google Scholar 

  23. Lerner N. The Wick calculus of pseudo-differential operators and some of its applications. Cubo Mat Educ, 2003, 5: 213–236

    MathSciNet  Google Scholar 

  24. Lerner N. Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators. Basel: Birkhäuser, 2010

    Book  Google Scholar 

  25. Lerner N, Morimoto Y, Pravda-Starov P, Xu C J. Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff. J Differential Equations, 2014, 256: 797–831

    Article  MathSciNet  Google Scholar 

  26. Li H G, Xu C J. The Cauchy problem for the radially symmetric homogeneous Boltzmann equation with Shubin class initial datum and Gelfand-Shilov smoothing effect. J Differential Equations, 2017, 263: 5120–5150

    Article  MathSciNet  ADS  Google Scholar 

  27. Lin S Y. Gevrey regularity for the noncutoff nonlinear homogeneous Boltzmann equation with strong singularity. Abstr Appl Anal, 2014, 2014: Art 584169

    Article  MathSciNet  Google Scholar 

  28. Lions P L. Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire. C R Acad Sci Paris Sér I Math, 1998, 326: 37–41

    Article  MathSciNet  ADS  Google Scholar 

  29. Morimoto Y, Ukai S. Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff. J Pseudo-Differ Oper Appl, 2010, 1: 139–159

    Article  MathSciNet  Google Scholar 

  30. Morimoto Y, Ukai S, Xu C J, Yang T. Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete Contin Dyn Syst, 2009, 24: 187–212

    Article  MathSciNet  Google Scholar 

  31. Morimoto Y, Xu C J. Ultra-analytic effect of Cauchy problem for a class of kinetic equations. J Differential Equations, 2009, 247: 596–617

    Article  MathSciNet  ADS  Google Scholar 

  32. Morimoto Y, Xu C J. Analytic smoothing effect for the nonlinear Landau equation of Maxwellian molecules. Kinet Relat Models, 2020, 13: 951–978

    Article  MathSciNet  Google Scholar 

  33. Morimoto Y, Yang T. Smoothing effect of the homogeneous Boltzmann equation with measure valued initial datum. Ann Inst H Poincaré Anal Non Linéaire, 2015, 32: 429–442

    Article  MathSciNet  ADS  Google Scholar 

  34. Mouhot C. Explicit coercivity estimates for the Boltzmann and Landau operators. Comm Partial Differential Equations, 2006, 31: 1321–1348

    Article  MathSciNet  Google Scholar 

  35. Mouhot C, Strain R. Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J Math Pures Appl, 2007, 87: 515–535

    Article  MathSciNet  Google Scholar 

  36. Shubin M A. Pseudodifferential Operators and Spectral Theory. Berlin: Springer-Verlag, 1987

    Book  Google Scholar 

  37. Ukai S. Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff. Japan J Appl Math, 1984, 1: 141–156

    Article  MathSciNet  Google Scholar 

  38. Villani C. Regularity estimates via the entropy dissipation for the spatially homogeneous boltzmann equation without cut-off. Rev Mat Iberoam, 1999, 15: 335–352

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Zeng.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

Liu’s research was supported by the NSFC (12101012) and the PhD Scientific Research Start-up Foundation of Anhui Normal University. Zeng’s research was supported by the NSFC (11961160716, 11871054, 12131017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zeng, J. The smoothing effect in sharp Gevrey space for the spatially homogeneous non-cutoff Boltzmann equations with a hard potential. Acta Math Sci 44, 455–473 (2024). https://doi.org/10.1007/s10473-024-0205-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-024-0205-0

Key words

2020 MR Subject Classification

Navigation