Abadi, M., Lamport, L.: An old-fashioned recipe for real-time. ACM Trans. Program. Lang. Syst. 16(5), 1543–1571 (1994)
Article
Google Scholar
Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)
MathSciNet
Article
MATH
Google Scholar
Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Inf. Comp. 104(1), 35–77 (1993)
MathSciNet
Article
MATH
Google Scholar
Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)
MathSciNet
Article
MATH
Google Scholar
Bauland, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The complexity of generalized satisfiability for linear temporal logic. Logical Methods in Computer Science 5(1) (2009)
Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The Cost of Punctuality. In: ACM/IEEE Symposium on Logic in Computer Science, pp 109–120 (2007)
Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The dark side of interval temporal logic: Sharpening the undecidability border. In: International Symposium on Temporal Representation and Reasoning, pp 131–138 (2011)
Bresolin, D., Della monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Metric propositional neighborhood logics on natural numbers. Softw. Syst. Model. 12(2), 245–264 (2013)
Article
MATH
Google Scholar
Bresolin, D., Monica, D. D., Montanari, A., Sala, P., Sciavicco, G.: Interval temporal logics over strongly discrete linear orders: Expressiveness and complexity. Theor. Comput. Sci. 560, 269–291 (2014)
MathSciNet
Article
MATH
Google Scholar
Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: Optimal decision procedures for MPNL over finite structures, the natural numbers, and the integers. Theor. Comput. Sci. 493, 98–115 (2013)
MathSciNet
Article
MATH
Google Scholar
Chaochen, Z., Hansen, M.R., Sestoft, P.: Decidability and Undecidability Results for Duration Calculus. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds.) STACS 93, 10th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 665, pp 58–68. Springer (1993)
Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics in simple cases. Inf. Comput. 174(1), 84–103 (2002)
MathSciNet
Article
MATH
Google Scholar
D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous semantics. STTT 9(1), 1–4 (2007)
Article
Google Scholar
D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous semantics. STTT 9(1), 1–4 (2007)
Article
Google Scholar
Emerson, E.A.: Temporal and Modal Logic. In: Handbook of Theoretical Computer Science, vol. B, pp 996–1072. Elsevier Science (1990)
Fränzle, M.: Model-checking dense-time duration calculus. Formal Asp. Comput. 16(2), 121–139 (2004)
Article
MATH
Google Scholar
Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling Time in Computing. Monographs in Theoretical Computer Science. An EATCS series Springer (2012)
Furia, C.A., Rossi, M.: MTL with bounded variability: Decidability and complexity. In: FORMATS, LNCS. Extended version in [19], vol. 5215, pp 109–123. Springer (2008)
Furia, C.A., Rossi, M.: MTL with bounded variability: Decidability and complexity. Tech. Rep. 2008.10, Dipartimento di Elettronica e Informazione, Politecnico di Milano. Available at http://bugcounting.net/publications.html#MTLwBoundedVar-TR08 (2008)
Furia, C.A., Rossi, M.: A theory of sampling for continuous-time metric temporal logic. ACM Transactions on Computational Logic 12(1), 1–40 (2010). Article 8
MathSciNet
Article
MATH
Google Scholar
Furia, C.A., Spoletini, P.: On Relaxing Metric Information in Linear Temporal Logic. In: International Symposium on Temporal Representation and Reasoning, pp 72–79. IEEE (2011)
Furia, C.A., Spoletini, P.: Automata-Based Verification of Linear Temporal Logic Models with Bounded Variability. In: International Symposium on Temporal Representation and Reasoning, pp 89–96. IEEE (2012)
Furia, C.A., Spoletini, P.: Bounded Variability of Metric Temporal Logic. In: Cesta, A., Combi, C., Laroussinie, F. (eds.) Proceedings of the 21st International Symposium on Temporal Representation and Reasoning (TIME’14), pp 155–163. IEEE Computer Society (2014)
Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal Logic (vol. 1): mathematical foundations and computational aspects, Oxford Logic Guides, vol. 28. Oxford University Press (1994)
Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the Temporal Basis of Fairness. In: Conference Record of the 7Th Annual ACM Symposium on Principles of Programming Languages (POPL’80), pp 163–173 (1980)
Hirshfeld, Y., Rabinovich, A.: Logics for real time: Decidability and complexity. Fundam. Inf. 62(1), 1–28 (2004)
MathSciNet
MATH
Google Scholar
Hirshfeld, Y., Rabinovich, A.: Continuous time temporal logic with counting. Inf. Comput. 214, 1–9 (2012)
MathSciNet
Article
MATH
Google Scholar
Hirshfeld, Y., Rabinovich, A.M.: Logics for real time: Decidability and complexity. Fundam. Inform. 62(1), 1–28 (2004)
MathSciNet
MATH
Google Scholar
Hunter, P., Ouaknine, J., Worrell, J.: Expressive Completeness for Metric Temporal Logic. In: LICS, pp 349–357. IEEE (2013)
Kamp, J.A.W.: Tense Logic and the Theory of Linear Order. Ph.D. Thesis. University of California, Los Angeles (1968)
Google Scholar
Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)
Article
Google Scholar
Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. SE-3(2), 125–143 (1977)
MathSciNet
Article
MATH
Google Scholar
Lutz, C., Walther, D., Wolter, F.: Quantitative temporal logics over the reals: PSPACE and below. Inf. Comput. 205(1), 99–123 (2007)
MathSciNet
Article
MATH
Google Scholar
Maler, O., Nickovic, D., Pnueli, A.: Real Time Temporal Logic: Past, present, future. In: Petterson, P., Yi, W. (eds.) Proceedings of the 3rd International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’05), Lecture Notes in Computer Science, vol. 3829, pp 2–16. Springer-Verlag (2005)
Maler, O., Nickovic, D., Pnueli, A.: From MITL to Timed Automata. In: Asarin, E., Bouyer, P. (eds.) Proceedings of the 4th International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’06), Lecture Notes in Computer Science, vol. 4202, pp 274–289. Springer-Verlag (2006)
Maler, O., Nickovic, D., Pnueli, A.: Checking Temporal Properties of Discrete, Timed and Continuous Behaviors. In: Pillars of Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85Th Birthday, Lecture Notes in Computer Science, vol. 4800, pp 475–505. Springer (2008)
Manna, Z., Pnueli, A.: A Hierarchy of Temporal Properties. In: Proceedings of the 9Th Annual ACM Symposium on Principles of Distributed Computing, pp 377–410. ACM (1990)
Minsky, M.L.: Computation: Finite and infinite machines prentice hall (1967)
Montanari, A., Pazzaglia, M., Sala, P.: Metric Propositional Neighborhood Logic with an Equivalence Relation. In: 21St International Symposium on Temporal Representation and Reasoning, (TIME), pp 49–58. IEEE Computer Society (2014)
Montanari, A., Puppis, G., Sala, P.: Decidability of the Interval Temporal Logic \(\mathsf {A}\bar {\mathsf {A}}\mathsf {B}\bar {\mathsf {B}}\) over the Rationals. In: Mathematical Foundations of Computer Science 2014 - 39Th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part I, pp 451–463 (2014)
Montanari, A., Sala, P.: An Optimal Tableau System for the Logic of Temporal Neighborhood over the Reals. In: 19Th International Symposium on Temporal Representation and Reasoning, TIME 2012, Leicester, United Kingdom, September 12-14, 2012, pp 39–46 (2012)
Nickovic, D., Piterman, N.: From MTL to Deterministic Timed Automata. In: Chatterjee, K., Henzinger, T.A. (eds.) Formal Modeling and Analysis of Timed Systems – 8th International Conference, FORMATS 2010, Lecture Notes in Computer Science, vol. 6246, pp 152–167. Springer (2010)
Ouaknine, J., Rabinovich, A., Worrell, J.: Time-Bounded Verification. In: Bravetti, M. , Zavattaro, G. (eds.) CONCUR 2009 – Concurrency Theory, 20th International Conference, Lecture Notes in Computer Science, vol. 5710, pp 496–510. Springer (2009)
Ouaknine, J., Worrell, J.: On Metric Temporal Logic and Faulty Turing Machines. In: FoSSaCS, LNCS, vol. 3921, pp 217–230. Springer (2006)
Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over finite words. Logical Methods in Computer Science 3(1) (2007)
Ouaknine, J., Worrell, J.: Some Recent Results in Metric Temporal Logic. In: FORMATS, LNCS, vol. 5215, pp 1–13. Springer (2008)
Ouaknine, J., Worrell, J.: Towards a Theory of Time-Bounded Verification. In: Abramsky, S., Gavoille, C., Kirchner, C., auf der Heide, F.M., Spirakis, P.G. (eds.) Automata, Languages and Programming, 37th International Colloquium, ICALP 2010, Lecture Notes in Computer Science, vol. 6199, pp 22–37. Springer (2010)
Papadimitriou, C.: Computational complexity Addison-Wesley (1994)
Perrin, D., Pin, J.E.́: Infinite Words, Pure and Applied Mathematics, vol. 141. Elsevier (2004)
Pnueli, A.: The Temporal Logic of Programs. In: Proceedings of the 18Th Annual Symposium on Foundations of Computer Science, SFCS ’77, pp 46–57. IEEE Computer Society (1977)
Rabinovich, A.: Complexity of Metric Temporal Logics with Counting and the Pnueli Modalities. In: FORMATS, Lecture Notes in Computer Science, vol. 5215, pp 93–108. Springer (2008)
Rabinovich, A.: Complexity of metric temporal logics with counting and the Pnueli modalities. Theor. Comput. Sci. 411(22-24), 2331–2342 (2010)
MathSciNet
Article
MATH
Google Scholar
Rabinovich, A.M.: Expressive completeness of Duration Calculus. Inf. Comput. 156(1-2), 320–344 (2000)
MathSciNet
Article
MATH
Google Scholar
Reynolds, M.: The complexity of temporal logic over the reals. Ann. Pure Appl. Logic 161(8), 1063–1096 (2010)
MathSciNet
Article
MATH
Google Scholar
Reynolds, M.: Metric temporal reasoning with less than two clocks. Journal of Applied Non-Classical Logics 20(4), 437–455 (2010)
MathSciNet
Article
MATH
Google Scholar
Reynolds, M.: A New Metric Temporal Logic for Hybrid Systems. In: 20Th International Symposium on Temporal Representation and Reasoning (TIME), pp 73–80. IEEE Computer Society (2013)
Rogers, Jr., H.: Theory of recursive functions and effective computability MIT press (1987)
Shepherdson, J.C., Sturgis, H.E.: Computability of recursive functions. J. ACM 10(2) (1963)
Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32(3), 733–749 (1985)
MathSciNet
Article
MATH
Google Scholar
Vardi, M.Y.: An Automata-Theoretic Approach to Linear Temporal Logic. In: Logics for Concurrency – Structure versus Automata (8Th Banff Higher Order Workshop), Lecture Notes in Computer Science, vol. 1043, pp 238–266. Springer (1995)
Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verification. In: LICS, pp 332–344. IEEE (1986)
Wilke, T.: Specifying Timed State Sequences in Powerful Decidable Logics and Timed Automata. In: FTRTFT, LNCS, vol. 863, pp 694–715. Springer (1994)