Skip to main content

Generalizing Non-punctuality for Timed Temporal Logic with Freeze Quantifiers

  • Conference paper
  • First Online:
Formal Methods (FM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 13047))

Included in the following conference series:

Abstract

Metric Temporal Logic (MTL) and Timed Propositional Temporal Logic (TPTL) are prominent real-time extensions of Linear Temporal Logic (LTL). In general, the satisfiability checking problem for these extensions is undecidable when both the future U and the past S modalities are used. In a classical result, the satisfiability checking for MITL[U,S], a non-punctual fragment of MTL[U,S], is shown to be decidable with EXPSPACE complete complexity. Given that this notion of non-punctuality does not recover decidability in the case of TPTL[U,S], we propose a generalization of non-punctuality called non-adjacency for TPTL[U,S], and focus on its 1-variable fragment, 1-TPTL[U,S]. While non-adjacent 1-TPTL[U,S] appears to be a very small fragment, it is strictly more expressive than MITL. As our main result, we show that the satisfiability checking problem for non-adjacent 1-TPTL[U,S] is decidable with EXPSPACE complete complexity.

This work is partially supported by the European Research Council through the SENTIENT project (ERC-2017-STG #755953).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here T is a special symbol denoting the timestamp of the present point and x is the clock that was frozen when x. was asserted.

  2. 2.

    We \(\mathsf {A}'_k\) instead of \(\mathsf {A}_k\) in the formulae below due to the strict inequalities in the semantics of \(\mathsf {PnEMTL}\) modalities.

  3. 3.

    Unbounded intervals can be eliminated using \(\mathcal {F}^{k}_{\mathsf {I_1, I_2, \ldots , I_{k{-}2},} [l_1, \infty ) [l_2, \infty )}(\mathsf {A}_1, \ldots , \mathsf {A}_{k+1}) {\equiv }\) \(\mathcal {F}^{k}_{\mathsf {I_1, I_2, \ldots , I_{k{-}2},} [l_1, \mathsf {cmax}) [l_2, \infty )}(\mathsf {A}_1, \ldots , \mathsf {A}_{k+1}) {\vee } \mathcal {F}^{k-1}_{\mathsf {I_1, I_2, \ldots , I_{k{-}2},} [l_2, \infty )}(\mathsf {A}_1, \ldots , \mathsf {A}_{k-1},\mathsf {A}_{k} \cdot \mathsf {A}_{k+1})\).

References

  1. Alur, R., Feder, T., Henzinger, T.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)

    Article  MathSciNet  Google Scholar 

  2. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf. Comput. 104(1), 35–77 (1993)

    Article  MathSciNet  Google Scholar 

  3. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–203 (1994)

    Article  MathSciNet  Google Scholar 

  4. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer, Heidelberg (2005). https://doi.org/10.1007/11590156_35

    Chapter  MATH  Google Scholar 

  5. Ferrère, T.: The compound interest in relaxing punctuality. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 147–164. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95582-7_9

    Chapter  Google Scholar 

  6. Gastin, P., Oddoux, D.: LTL with past and two-way very-weak alternating automata. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 439–448. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45138-9_38

    Chapter  Google Scholar 

  7. Haase, C., Ouaknine, J., Worrell, J.: On process-algebraic extensions of metric temporal logic. In: Roscoe, A.W., Jones, C.B., Wood, K.R. (eds.) Reflections on the Work of C.A.R. Hoare, pp. 283–300. Springer, London (2010). https://doi.org/10.1007/978-1-84882-912-1_13

    Chapter  MATH  Google Scholar 

  8. Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–591. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055086

    Chapter  Google Scholar 

  9. Hirshfeld, Y., Rabinovich, A.: An expressive temporal logic for real time. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 492–504. Springer, Heidelberg (2006). https://doi.org/10.1007/11821069_43

    Chapter  Google Scholar 

  10. Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous time. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 211–220. Springer, Heidelberg (2006). https://doi.org/10.1007/11753728_23

    Chapter  Google Scholar 

  11. Ho, H.-M.: Revisiting timed logics with automata modalities. In: Ozay, N., Prabhakar, P. (eds.) Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada, 16–18 April 2019, pp. 67–76. ACM (2019)

    Google Scholar 

  12. Madnani, K., Krishna, S.N., Pandya, P.K.: Partially punctual metric temporal logic is decidable. In: TIME, pp. 174–183 (2014)

    Google Scholar 

  13. Krishna, S.N., Madnani, K., Mazo Jr., M., Pandya, P.K.: Generalizing non-punctuality for timed temporal logic with freeze quantifiers. CoRR, abs/2105.09534 (2021)

    Google Scholar 

  14. Krishna, S.N., Madnani, K., Pandya, P.K.: Making metric temporal logic rational. In: Larsen, K.G., Bodlaender, H.L., Raskin, J.-F. (eds.) 42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017, 21–25 August 2017 - Aalborg, Denmark. LIPIcs, vol. 83, pp. 77:1–77:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  15. Krishna, S.N., Madnani, K., Pandya, P.K.: Logics meet 1-clock alternating timed automata. In: Schewe, S., Zhang, L. (eds.) 29th International Conference on Concurrency Theory, CONCUR 2018, 4–7 September 2018, Beijing, China. LIPIcs, vol. 118, pp. 39:1–39:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

    Google Scholar 

  16. Madnani, K.N.: On decidable extensions of metric temporal logic. Ph.D. thesis, Indian Institute of Technology Bombay, Mumbai, India (2019)

    Google Scholar 

  17. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: LICS, pp. 188–197 (2005)

    Google Scholar 

  18. Pandya, P.K., Shah, S.S.: On expressive powers of timed logics: comparing boundedness, non-punctuality, and deterministic freezing. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 60–75. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_5

    Chapter  Google Scholar 

  19. Prabhakar, P., D’Souza, D.: On the expressiveness of MTL with past operators. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 322–336. Springer, Heidelberg (2006). https://doi.org/10.1007/11867340_23

    Chapter  MATH  Google Scholar 

  20. Rabinovich, A.: Complexity of metric temporal logic with counting and pnueli modalities. In: FORMATS, pp. 93–108 (2008)

    Google Scholar 

  21. Rabinovich, A.: Complexity of metric temporal logics with counting and the pnueli modalities. Theor. Comput. Sci. 411(22–24), 2331–2342 (2010)

    Article  MathSciNet  Google Scholar 

  22. Raskin, J.F.: Logics, automata and classical theories for deciding real time. Ph.D. thesis, Universite de Namur (1999)

    Google Scholar 

  23. Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed automata. In: Formal Techniques in Real-Time and Fault-Tolerant Systems, Third International Symposium Organized Jointly with the Working Group Provably Correct Systems - ProCoS, Lübeck, Germany, 19–23 September, Proceedings, pp. 694–715 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushraj Madnani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krishna, S.N., Madnani, K., Mazo, M., Pandya, P.K. (2021). Generalizing Non-punctuality for Timed Temporal Logic with Freeze Quantifiers. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds) Formal Methods. FM 2021. Lecture Notes in Computer Science(), vol 13047. Springer, Cham. https://doi.org/10.1007/978-3-030-90870-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90870-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90869-0

  • Online ISBN: 978-3-030-90870-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics