Skip to main content
Log in

A differential IR-UWB transmitter using PAM modulation with adaptive PSD

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The current state of the telecommunications market exhibits a high potential to absorb efficient innovations in wireless connectivity, especially those that can be applied to the Internet of Things and similar domains. Contributing in that direction, this paper describes the design and implementation of a fully differential impulse-radio ultra-wideband (IR-UWB) transmitter using pulse-amplitude modulation, with an adaptive power spectrum density (PSD). The architecture can produce up to eight differential monocycles per clock pulse at its output. The number of monocycles controls the bandwidth (thus the PSD) in the mask of IR-UWB technologies, allowing adaptation to multiple standards. The complete transmitter has four main blocks: (a) a pulse generator, comprising two pulse generating circuit groups, to modulate and create a rectangular waveform; (b) an active balun with two amplifiers, to generate differential signals; (c) a digital demultiplexer, to alternate data to the pulse generating circuit groups; (d) a binary-to-thermometer decoder, to control the amount of generated monocycles per pulse. Simulations demonstrate an output pulse amplitude of 120 mV for the high logic level and of 70 mV for the low logic level, both at a 100 MHz Pulse Repetition Frequency. This produces a mean pulse duration of 277 ps, a mean central frequency of 3.8 GHz, and a mean power consumption 6.7 mW. The transmitter takes the form of an intellectual property core in a 130 nm CMOS technology. The complete transmitter area is 0.067 mm\(^2\), without I/O pads. The outcomes suggest that the proposed circuit can narrow or widen the output signal bandwidth, providing adaptability to different emission requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vashi, S., Ram, J., Modi, J., Verma, S., & Prakash, C. (2017). Internet of Things (IoT): A vision, architectural elements, and security issues. In IoT in social, mobile, analytics and cloud (I-SMAC) (pp. 492–496).

  2. Sharma, S., Gupta, A., & Bhatia, V. (2017). A simple modified peak detection based UWB receiver for WSN and IoT applications. In IEEE vehicular technology conference (VTC) (pp. 1–6).

  3. Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. (2015). The internet of things for health care: A comprehensive survey. IEEE Access, 3, 678–708.

    Article  Google Scholar 

  4. Zhang, Z., Li, Y., Wang, G., & Lian, Y. (2018). The design of an energy-efficient IR-UWB transmitter with wide-output swing and sub-microwatt leakage current. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(10), 1485–1489.

    Article  Google Scholar 

  5. Chen, C., Do, M. A., Yeo, K. S., & Boon, C. C. (2011). A fully integrated low power PAM multi-channel UWB transmitter. Analog Integrated Circuits and Signal Processing, 68, 77–84.

    Article  Google Scholar 

  6. Moreira, L. C., Neto, J. F., Ferauche, T., Novaes, G. A. S., & Rios, E. T. (2017). All-digital reconfigurable IR-UWB pulse generator using BPSK modulation in 130 nm RF-CMOS process. In Latin American symposium on circuits systems (LASCAS) (pp. 1–4).

  7. Lembrikov, B. I. (2016). Novel applications of the UWB technologies. In ExLi4EvA.

  8. Liu, M., Xiao, J., Luo, P., Zhu, Z., & Yang, Y. (2020). Ultrawideband power-switchable transmitter with 17.7-dBm output power for see-through-wall radar. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(5), 1331–1335.

    Article  Google Scholar 

  9. Bourdel, S., Bachelet, Y., Gaubert, J., Vauche, R., Fourquin, O., Dehaese, N., et al. (2010). A 9-pJ/pulse 1.42-Vpp OOK CMOS UWB pulse generator for the 3.1–10.6-GHz FCC band. IEEE Transactions on Microwave Theory and Techniques, 58(1), 65–73.

    Article  Google Scholar 

  10. Lin, Y., Park, S., Chen, X., Wentzloff, D., & Yoon, E. (2018). 4.32-pJ/b, overlap-free, feedforward edge-combiner-based ultra-wideband transmitter for high-channel-count neural recording. IEEE Microwave and Wireless Components Letters, 28(1), 52–54.

    Article  Google Scholar 

  11. Wang, Y., Niknejad, A. M., Gaudet, V., & Iniewski, K. (2008). A CMOS IR-UWB transceiver design for contact-less chip testing applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(4), 334–338.

    Article  Google Scholar 

  12. Vauche, R., Muhr, E., Fourquin, O., Bourdel, S., Gaubert, J., Dehaese, N., et al. (2017). A 100 MHz PRF IR-UWB CMOS transceiver with pulse shaping capabilities and peak voltage detector. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(6), 1612–1625.

    Article  Google Scholar 

  13. Mercier, P. P., Daly, D. C., & Chandrakasan, A. P. (2009). An energy-efficient all-digital UWB transmitter employing dual capacitively-coupled pulse-shaping drivers. IEEE Journal of Solid-State Circuits, 44(6), 1679–1688.

    Article  Google Scholar 

  14. Gozalpour, F., Habibzadeh-Sharif, A., & Aghdam, E. N. (2017). Design of an IR-UWB transmitter with adaptive PSD in 0.02–1.4 Gpps. In Iranian conference on electrical engineering (ICEE) (pp. 216–221).

  15. Maymandi-Nejad, M., & Sachdev, M. (2003). A digitally programmable delay element: Design and analysis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 11(5), 871–878.

    Article  Google Scholar 

  16. Weste, N. H. E., & Eshraghian, K. (1992). Principles of CMOS VLSI Design: A Systems Perspective (2nd ed.). Boston: Addison-Wesley.

    Google Scholar 

  17. Moreira, L. C., Neto, J. F., Oliveira, W. S., Ferauche, T., Heck, G., Calazans, N. L. V., & Moraes, F. G. (2019). An IR-UWB pulse generator using PAM modulation with adaptive PSD in 130 nm CMOS process. In Symposium on integrated circuits and systems design (SBCCI) (pp 1–6).

  18. H Li, R. C. (2012). Design of analog CMOS integrated circuits (second edition ed.). Hoboken: Wiley.

    Google Scholar 

  19. Abdulrazzaq, B. I., Halin, I. A., Kawahito, S., Sidek, R. M., Shafie, S., & Yunus, N. A. M. (2016). A review on high-resolution CMOS delay lines: Towards sub-picosecond jitter performance. SpringerPlus, 5(434), 1–32.

    Google Scholar 

  20. Sheng, H., Orlik, P., Haimovich, A. M., Cimini, L. J., & Zhang, J. (2003). On the spectral and power requirements for ultra-wideband transmission. In IEEE international conference on communications (ICC) (pp. 738–742).

  21. Shen, M., Yin, Y., Jiang, H., Tian, T., Jensen, O. K., & Mikkelsen, J. H. (2015). A 0.76-pJ/pulse 0.1–1 Gpps microwatt IR-UWB CMOS pulse generator with adaptive PSD control using a limited monocycle precharge technique. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(8), 806–810.

    Article  Google Scholar 

  22. Jovanovic, G., & Stojcev, M. K. (2006). Current starved delay element with symmetric load. International Journal of Electronics, 93(3), 167–175.

    Article  Google Scholar 

  23. Ndjountche, T. (2017). CMOS analog integrated circuits: High-speed and power-efficient design. Boca Raton: CRC Press.

    Book  Google Scholar 

  24. Madhumati, G. L., Rao, K. R., & Madhavilatha, M. (2009). Comparison of 5-bit thermometer-to-binary decoders in 1.8 V, 0.18 μm CMOS technology for flash ADCs. In International conference on signal processing systems (ICSPS) (pp. 516–520).

  25. Nguyen, C. (2015). Radio-frequency integrated-circuit engineering. Hoboken: Wiley.

    Book  Google Scholar 

  26. Demirkan, M., & Spencer, R. R. (2008). A pulse-based ultra-wideband transmitter in 90-nm CMOS for WPANs. IEEE Journal of Solid-State Circuits, 43(12), 2820–2828.

    Article  Google Scholar 

  27. Dong, R., Kanaya, H., & Pokharel, R. K. (2017). A CMOS ultrawideband pulse generator for 3–5 GHz applications. IEEE Microwave and Wireless Components Letters, 27(6), 584–586.

    Article  Google Scholar 

  28. Johns, D. A., & Martin, K. (2008). Analog integrated circuit design. Hoboken: Wiley.

    MATH  Google Scholar 

  29. Shairi, N. A., Algumaei, M. Y. Q., Zakaria, Z., & Ibrahim, I. M. (2017). Review of mixer and balun designs for UWB applications. International Journal of Applied Engineering Research, 12(17), 6514–6522.

    Google Scholar 

  30. Li, J.-Y., Lin, W.-J., Houng, M.-P., & Chen, L.-S. (2010). A low power consumption and wide-band input matching CMOS active balun for UWB system applications. Journal of Electromagnetic Waves and Applications, 24(11–12), 1449–1457.

    Article  Google Scholar 

  31. Pantoli, L., Stornelli, V., Leuzzi, G., Bartocci, M., Trotta, F., Gaetano, D., et al. (2018). An ultra-wideband monolitic active balun. In International workshop on integrated nonlinear microwave and millimetre-wave circuits (INMMIC) (pp. 1–3).

  32. Hsu, T. T., & Kuo, C. N. (2006). Low power 8-GHz ultra-wideband active balun. In Topical meeting on silicon monolithic integrated circuits in RF systems (pp. 365–368).

  33. Razavi, B. (2001). Design of analog CMOS integrated circuits. New York: McGraw-Hill.

    Google Scholar 

  34. Gray, P. R., Hurst, P. J., Lewis, S. H., & Meyer, R. G. (2009). Analysis and design of analog integrated circuits. Hoboken: Wiley.

    Google Scholar 

  35. Shin, M., Lee, Y., Lee, C., & Lee, D. (2017). A wideband noise-cancelling CG-CS LNA with transformer source coupling. In International symposium on radio-frequency integration technology (RFIT) (pp. 177–179).

  36. Blaakmeer, S. C., Klumperink, E. A. M., Leenaerts, D. M. W., & Nauta, B. (2008). Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. Journal of Solid-State Circuits, 43(6), 1341–1350.

    Article  Google Scholar 

  37. Abdollahvand, S., Santos-Tavares, R., & Goes, J. (2013). A low-voltage CMOS buffer for RF applications based on a fully-differential voltage-combiner. In Doctoral conference on computing, electrical and industrial systems (DoCEIS): Technological innovation for the internet of things (pp. 611–618). Springer.

  38. Anwar, M. A. (2015). A novel noise cancelling technique for CMOS low noise amplifier. Master’s thesis, International Institute of Information Technology (IIIT-H). Center for VLSI & Embedded System Technologies (CVEST), Hyderabad, India.

  39. Mir-Moghtadaei, S. V., Fotowat-Ahmady, A., Nezhad, A. Z., & Serdijn, W. A. (2014). A 90 nm-CMOS IR-UWB BPSK to improve peaceful UWB-narrowband coexistence. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(6), 1836–1848.

    Article  Google Scholar 

  40. Crepaldi, M., Angotzi, G. N., Maviglia, A., Diotalevi, F., & Berdondini, L. (2018). A 5 pJ/pulse at 1-Gpps pulsed transmitter based on asynchronous logic master-slave PLL synthesis. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(3), 1096–1109.

    Article  Google Scholar 

Download references

Acknowledgements

This research received partial support through Grant #2016/15857-2 of the Sño Paulo State Research Support Foundation (FAPESP). It also receives partial support from the CNPq Brazilian agency through Grants #312917/2018-0 and #302531/2016-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Carlos Moreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, L.C., Victor, M.H., Saotome, O. et al. A differential IR-UWB transmitter using PAM modulation with adaptive PSD. Analog Integr Circ Sig Process 106, 339–350 (2021). https://doi.org/10.1007/s10470-020-01756-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01756-0

Keywords

Navigation