Skip to main content
Log in

A fully integrated low power PAM multi-channel UWB transmitter

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A new transmitter for ultra-wideband (UWB) impulse radio is described in this paper. The new UWB transmitter implements a low power Gaussian shaping filter to reduce the side-lobe in the frequency domain. A simple pulse amplitude modulation (PAM) circuit is used to keep the power consumption low. The proposed architecture features the simple design, low-power operation, and enables the pulse-shape generation for a multi-channel UWB. The core layout size is only 0.2 mm2. The simulation results show that the generated signals satisfy the FCC spectrum mask, and the average power consumption is <1.97 mW for the 1.8 V supply voltage. Pulses are transmitted at a PRF (pulse repetition frequency) of 40.5 MHz in 500 MHz bandwidth channels equally spaced within the 3.1–10.6 GHz UWB. This transmitter is designed and fabricated in a 0.18-μm CMOS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. FCC. (2002). Revision of part 15 of the Commission’s rules regarding ultra-wide-band transmission systems. FCC, Washington, DC, 2002, FCC report and order, adopted 14 February 2002, released 15 July 2002.

  2. FCC. (2004). Second report and order and second memorandum opinion and order. FCC 04-285, December 2004.

  3. Aiello, G. R. (2003). Challenges for ultra-wideband (UWB) CMOS integration. In IEEE radio frequency integrated circuits Symposium (pp. 497–500).

  4. Frontana, G. J. (2004). Recent system applications of short-pulse ultra-wideband (UWB) technology. IEEE Transactions on Microwave Theory and Techniques, 52(9), 2087–2104.

    Article  Google Scholar 

  5. Norimatsu, T., Fujiwara, R., Kokubo, M., Miyazaki, M., Maeki, A., Ogata, Y., et al. (2007). A UWB-IR transmitter with digitally controlled pulse generator. IEEE Journal of Solid-State Circuits, 42(6), 1300–1309.

    Article  Google Scholar 

  6. Salahuddin, S. M., Raju, S., & Saha, P. K. (2008). Reconfigurable monocycle pulse based UWB transmitter in 0.18 μm CMOS for intra/interchip wireless inter connect. In IEEE International conference on Electrical and Computer Engineering (pp. 315–318).

  7. Bagga, S., Serdijn, W. A., & Long, J. R. (2004). A PPM Gaussian monocycle transmitter for ultra-wideband communications. In IEEE International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technology (pp. 130–134).

  8. Wentzloff, D. D., & Chandrakasan, A. P. (2006). Gaussian pulse generators for subbanded ultra-wideband transmitters. IEEE Transactions on Microwave Theory and Techniques, 54(4), 1647–1655.

    Article  Google Scholar 

  9. Ryckaert, J., Desset, C., et al. (2005). Ultra-wide-band transmitter for low-power wireless body area networks: Design and evaluation. IEEE Transactions on Circuits and Systems, 52(12), 2515–2525.

    Article  Google Scholar 

  10. Xia, L., Huang, Y., & Hong, Z. (2008). Low power amplitude and spectrum tunable IR-UWB transmitter. IEEE Electronic Letters, 44(20), 1200–1201.

    Article  Google Scholar 

  11. Demirkan, M., & Spencer, R. R. (2008). A pulse-based ultra-wideband transmitter in 90-nm CMOS for WPANs. IEEE Journal of Solid-State Circuits, 43(12), 2820–2828.

    Article  Google Scholar 

  12. Anis, M., Ortmanns, M., & When, N. (2010). Full integrated UWB impulse transmitter and 402-to-405 MHz Super-regenerative receiver for medical implant devices. In IEEE International symposium on circuits and systems (pp. 1213–1215).

  13. Kim, H., Park, D., & Joo, Y. (2003). Design of CMOS Scholtz’s monocycle pulse generator. In IEEE conference on ultra wideband systems and technologies (pp. 81–85).

  14. Jeong, Y., Jung, S., & Liu, J. (2004). A CMOS impulse generator for UWB wireless communications systems. In IEEE International symposium on circuits and systems (pp. 129–132).

  15. Saha, P. K., Sasaki, N., & Kikkawa, T. (2004). A CMOS UWB transmitter for intra/inter-chip wireless communication. In IEEE International symposium on spread spectrum techniques and applications (pp. 962–966).

  16. Marsden, K., Lee, H.-J., Ha, D. S., & Lee, H.-S. (2003). Low power CMOS re-programmable pulse generator for UWB systems. In IEEE conference on ultra wideband systems and technologies (pp. 443–447).

  17. Chang, Z. Y., & Sansen, W. M. C. (1991). Low-noise wide-band amplifiers in bipolar and CMOS technologies (Chap. 5). Norwell, MA: Kluwer.

  18. Fairstein, E. (1990). Linear unipolar pulse-shaping networks: Current technology. IEEE Transaction on Nuclear Science, 37(2), 382–397.

    Article  Google Scholar 

  19. Lathi, B. P. (1998). Modern digital and analog communication systems (3rd ed.). Oxford: Oxford University Press, Inc.

    Google Scholar 

  20. Hajimiri, A., & Lee, T. H. (1999). Design issues in CMOS differential LC oscillator. IEEE Journal of Solid-State Circuits, 34(5), 717–724.

    Article  Google Scholar 

  21. Zheng, Y., Tong, Y., Yan, J., Xu, Y.-P., Yeoh, W. G., & Lin, F. (2005). A low power noncoherent CMOS UWB transceiver ICs. In IEEE radio frequency integrated circuits symposium (pp. 347–350).

  22. Chi, B., Yao, J., Han, S., Xie, X., Li, G., & Wang, Z. (2007). Low power high data rate wireless endoscopy transceiver. Microelectronics Journal, 38(10–11), 1070–1081.

    Article  Google Scholar 

  23. Zhu, Y., Zuegel, J. D., Marciante, J. R., & Wu, H. (2009). Distributed waveform generator: A new circuit technique for ultra-wideband pulse generation, shaping and modulation. IEEE Journal of Solid-State Circuits, 44(3), 808–823.

    Article  Google Scholar 

  24. Zhang, F., Jha, A., Gharpurey, R., & Kinget, P. (2009). An agile, ultra-wideband pulse radio transceiver with discrete-time wideband-IF. IEEE Journal of Solid-State Circuits, 44(5), 1336–1351.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixia Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Do, M.A., Yeo, K.S. et al. A fully integrated low power PAM multi-channel UWB transmitter. Analog Integr Circ Sig Process 68, 77–84 (2011). https://doi.org/10.1007/s10470-010-9585-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-010-9585-2

Keywords

Navigation