Skip to main content
Log in

Analysis and modeling of interstacked transformers for mm-wave applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The analysis and modeling of monolithic interstacked transformers for mm-wave applications is addressed. The performance advantages of the interstacked structure are demonstrated by using the most important figures of merit for integrated transformers and a physic-based scalable lumped model is proposed. The model components are calculated with closed-form expressions that make use of geometrical and technological parameters. The accuracy of the proposed model is demonstrated by comparison with electromagnetic data in a wide frequency range. Maximum errors are below 5, 7.5, and 2% for magnetic coupling factor, quality factor, and self-resonance frequency, respectively. High accuracy is also achieved in the modeling of S-parameters up to the self-resonance frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dickson, T. O., et al. (2005). 30–100-GHz inductors and transformers for millimeter-wave (Bi)CMOS integrated circuits. IEEE Transactions on Microwave Theory and Techniques, 53, 123–133.

    Article  Google Scholar 

  2. Ragonese, E., Scuderi, A., & Palmisano, G. (2008). A transformer-loaded variable-gain LNA for 24-GHz vehicular short-range radar. Wiley Microwave and Optical Technology Letters, 50, 2013–2016.

    Article  Google Scholar 

  3. Chowdhury, D., Reynaert, P., & Niknejad, A. M. (2009). Design considerations for 60 GHz transformer-coupled CMOS power amplifiers. IEEE Journal of Solid-State Circuits, 44, 2733–2744.

    Article  Google Scholar 

  4. Yo-Sheng, L. (2005). Implementation of perfect-magnetic-coupling ultralow-loss transformer in RFCMOS technology. IEEE Electron Device Letters, 26, 832–835.

    Article  Google Scholar 

  5. Lim, C.-C., et al. (2008). High self-resonant and area efficient monolithic transformer using novel intercoil-crossing structure for silicon RFIC. IEEE Electron Device Letters, 29, 1376–1379.

    Article  Google Scholar 

  6. Lim, C. C. et al. (2008). An area efficient high turn ratio monolithic transformer for silicon RFIC. In IEEE Radio Frequency Integrated Circuits Symposium, Digest of Papers, June 2008 (pp. 167–170).

  7. Ragonese, E., Sapone, G., & Palmisano, G. (2010). High-performance interstacked transformers for mm-wave ICs. Wiley Microwave and Optical Technology Letters, 52, 2160–2163.

    Article  Google Scholar 

  8. Avenier, G., et al. (2009). 0.13 μm SiGe BiCMOS technology fully dedicated to mm-wave applications. IEEE Journal of Solid-State Circuits, 44, 2312–2321.

    Article  Google Scholar 

  9. Carrara, F., Italia, A., Ragonese, E., & Palmisano, G. (2006). Design methodology for the optimization of transformer loaded RF circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 53, 761–768.

    Article  Google Scholar 

  10. Tretiakov, Y., Groves, R., Rascoe J., Mathis C., & Foley, B. (2004). Improved modeling accuracy of thick metal passive SiGe/BiCMOS components for UWB using ADS momentum. In IEEE Radio Frequency Integrated Circuits Symposium, Digest of Papers, June 2004 (pp. 461–464).

  11. Ragonese, E., & Palmisano, G. (2009). Design of a SiGe BiCMOS low-noise amplifier for 24-GHz UWB automotive radar. In European Agilent technologies ADS users’ group meeting, Rome, May, 2009. http://www.home.agilent.com/upload/cmc_upload/All/Ragonese EuropeanADSMeetingweb.pdf

  12. Ragonese, E., Scuderi, A., Giammello, V., & Palmisano, G. (2011). A SiGe BiCMOS 24-GHz receiver front-end for automotive short-range radar. Springer Analog Integrated Circuits and Signal Processing, 67, 121–130.

    Article  Google Scholar 

  13. ADS Momentum User Manual. (2009). Agilent Technologies.

  14. Biondi, T., Scuderi, A., Ragonese, E., & Palmisano, G. (2006). Analysis and modeling of layout scaling in silicon integrated stacked transformers. IEEE Transactions on Microwave Theory and Techniques, 54, 2203–2210.

    Article  Google Scholar 

  15. Mohan, S. S., del Mar Hershenson, M., Boyd, S. P., & Lee, T. H. (1999). Simple accurate expression for planar spiral inductances. IEEE Journal of Solid-State Circuits, 34, 1419–1424.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egidio Ragonese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragonese, E., Sapone, G., Giammello, V. et al. Analysis and modeling of interstacked transformers for mm-wave applications. Analog Integr Circ Sig Process 72, 121–128 (2012). https://doi.org/10.1007/s10470-011-9822-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-011-9822-3

Keywords

Navigation