Skip to main content
Log in

A 89-dB DR 457-μW 20-kHz bandwidth delta-sigma modulator with gain-boosting OTAs

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper presents a low-power, high-resolution delta-sigma modulator for use in portable devices. The modulator architecture uses a mixed-loop topology, having both feedback and feedforward paths. A new fully differential operational transconductance amplifier is designed that has a higher slew rate and a higher dc gain than conventional amplifiers. A 0.5-mm2 modulator chip is implemented in a standard 0.25-μm CMOS process and operates with a 1.5-V power supply. Measurement results demonstrate a 89-dB dynamic range in a 20-kHz bandwidth with only 457 μW of power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Schreier, R., & Temes, G. C. (2005). Understanding delta-sigma data converters. New Jersey: John Wiley & Sons.

    Google Scholar 

  2. Coban A. L., & Allen, P. E. (1999). A 1.5-V 1.0-mW audio ΔΣ modulator with 98-dB dynamic range. In Proceedings of the IEEE International Solid-State Circuits Conference Dig. Tech. Papers (pp. 50–51).

  3. Silva, J., Moon, U., Steensgaard, J., & Temes, G. C. (2001). Wideband low-distortion delta-sigma ADC topology. IEE Electronics Letters, 37, 737–738.

    Article  Google Scholar 

  4. Roh, J. (2006). High-gain class-AB OTA with low quiescent current. Analog Integrated Circuits and Signal Processing, 47(2), 225–228.

    Article  Google Scholar 

  5. Choi, Y., Roh, J., Roh, H., Nam, H., & Lee, S. (2009). A 99-dB DR fourth-order delta-sigma modulator for 20-kHz bandwidth sensor applications. IEEE Transations on Instrumentation and Measurement, 58(7), 2264–2274.

    Article  Google Scholar 

  6. Malcovati, P., Brigati, S., Francesconi, F., Maloberti, F., Cusinato, P., & Baschirotto, A. (2003). Behavioral modeling of switched-capacitor sigma-delta modulators. IEEE Transactions on Circuits and Systems I, 50(3), 352–364.

    Article  Google Scholar 

  7. Allen, P. E., & Holberg, D. R. (1987). CMOS analog circuit design. New York: Oxford University Press.

    Google Scholar 

  8. Razavi, B. (2001). Design of analog CMOS integrated circuits. Boston: McGraw-Hill.

    Google Scholar 

  9. Baker, R. J., Li, H. W., & Boyce, D. E. (1997). CMOS circuit design, layout, and simulation. New York: IEEE Press.

    Google Scholar 

  10. Peluso, V., Vancorenland, P., Marques, A. M., Steyaert, M. S. J. & Sansen, W. (1998). A 900-mV low-power ΔΣ A/D converter with 77-dB dynamic range. IEEE Journal of Solid-State Circuits, 33(12), 1887–1897.

    Article  Google Scholar 

  11. Dessouky, M., & Kaiser, A. (2001). Very low-voltage digital-audio ΔΣ modulator with 88-dB dynamic range using local switch bootstrapping. IEEE Journal of Solid-State Circuits, 36(3), 349–355

    Article  Google Scholar 

  12. Sauerbrey, J., Tille, T., Schmitt-Landsiedel, D., & Thewes, R. (2002). A 0.7-V MOSFET-only switched-opamp ΣΔ modulator in standard digital CMOS technology. IEEE Journal of Solid-State Circuits, 37(12), 1662–1669.

    Article  Google Scholar 

  13. Grilo, J., Galton, I., Wang, K., & Montemayor, R. G. (2002). A 12-mW ADC delta-sigma modulator with 80 dB of dynamic range integrated in a single-chip bluetooth transceiver. IEEE Journal of Solid-State Circuits, 37(3), 271–278.

    Article  Google Scholar 

  14. Keskin, M., Moon, U. K., & Temes, G. C. (2002). A 1-V 10-MHz clock-rate 13-bit CMOS ΔΣ modulator using unity-gain-reset op amps. IEEE Journal of Solid-State Circuits, 37(7), 817–824.

    Article  Google Scholar 

  15. Bajdechi, O., & Huijsing, J. H. (2002). A 1.8-V modulator interface for an electret microphone with on-chip reference. IEEE Journal of Solid-State Circuits, 37(3), 279–285.

    Article  Google Scholar 

  16. Gaggl, R., Wiesbauer, A., Schranz, C., & Pessl, P. (2003). A 85-dB dynamic range multibit delta-sigma ADC for ADSL-CO applications in 0.18 μm CMOS. IEEE Journal of Solid-State Circuits, 38(7), 1105–1114.

    Article  Google Scholar 

  17. Yao, L., Steyaert, M. S. J., & Sansen, W. (2004). A 1-V 140-μW 88-dB audio sigma-delta modulator in 90-nm CMOS. IEEE Journal of Solid-State Circuits, 39(11), 1809–1818.

    Article  Google Scholar 

  18. Goes, J., Vaz, B., Monteiro, R., & Paulino, N. (2006) A 0.9 ΣΔ modulator with 80-dB SNDR and 83-dB DR using a single-phase technique. In Proceedings of the IEEE International Solid-State Circuits Conference Dig. Tech. Papers (pp. 74–75).

  19. Pun, K., Chatterjee, S., & Kinget, P. (2007). A 0.5-V 74-dB SNDR 25-kHz continuous-time delta-sigma modulator with a return-to-open DAC. IEEE Journal of Solid-State Circuits, 42(3), 496–507.

    Article  Google Scholar 

  20. Rabii S., & Wooley, B. A. (1999). The design of low-voltage, low-power sigma-delta modulators. Norwood, MA: Kluwer.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeongjin Roh.

Additional information

This work was supported by the Korean Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MEST) (No. R01-2008-000-11056-0).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roh, H., Choi, Y. & Roh, J. A 89-dB DR 457-μW 20-kHz bandwidth delta-sigma modulator with gain-boosting OTAs. Analog Integr Circ Sig Process 64, 173–182 (2010). https://doi.org/10.1007/s10470-009-9431-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9431-6

Keywords

Navigation