Skip to main content
Log in

\(\mathbf {g_{m}/I_{D}}\) Sizing and analysis of a recycling folded-cascode OTA for ECG signal conditioning in 0.18 \(\upmu\)m  CMOS technology

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents the design and analysis of a recycling folded-cascode (RFC) OTA intended for any generic capacitive-feedback ECG amplifier. The \(\frac{g_{m}}{I_{D}}\) methodology is utilized for sizing the RFC OTA, to achieve the prime targets of ultra-low power consumption and low input referred noise. The improved RFC topology is used to achieve higher CMRR. A detailed noise analysis of the overall IA is also included. An account of the chief contributors to the IA’s overall noise and design techniques to minimize the same is incorporated. Implemented using UMC 0.18 \(\upmu\)m, the complete circuit consumes a power of 0.47\(\upmu\) from a 1.8 V supply. The post-layout simulation results show that the designed circuit satisfies all essential specifications of an ECG acquisition system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Burke, M. J., & Gleeson, D. T. (2000). A micropower dry-electrode ECG preamplifier. IEEE Transactions on Biomedical Engineering, 47(2), 155–162.

    Article  Google Scholar 

  2. Dobrev, N.M.D., Neycheva, T. (2005). Simple two-electrode biosignal amplifier. Medical and Biological Engineering and Computing, 43.

  3. Dobrev, D. (2004). Two-electrode low supply voltage electrocardiogram signal amplifier. Medical and Biological Engineering and Computing, 42.

  4. Chun Kit, A.C., Hamada, H., Fujiwara, H., Okochi, S., Higuchi, K., Kajiya, A., Fujita, T., Maenaka, K. (2012). A small, wearable, stretchable electrocardiogram and physical activity monitoring system. ICST, 11 .

  5. Zou, Y., Han, J., Xuan, S., Huang, S., Weng, X., Fang, D., & Zeng, X. (2015). An energy-efficient design for ecg recording and r-peak detection based on wavelet transform. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(2), 119–123.

    Google Scholar 

  6. Munoz, R. Designing for vital sign monitoring. Analog Devices. [Online]. Available: http://www.analog.com/en/education/education-library/webcasts/vital-sig n-monitoring.html

  7. Yazicioglu, R. F., Merken, P., Puers, R., & Hoof, C. V. (2007). A 60 \(\mu\)w 60 nv/\(\surd\)hz readout front-end for portable biopotential acquisition systems. IEEE Journal of Solid-State Circuits, 42(5), 1100–1110.

    Article  Google Scholar 

  8. Prior, C., Rodrigues, C., Aita, A., Martins, J., & Vieira, F. (2008). Design of an integrated low power high CMRR instrumentation amplifier for biomedical applications. Analog Integrated Circuits and Signal Processing, 57(11), 11–17.

    Article  Google Scholar 

  9. Harb, A., & Sawan, M. (1999). New low-power low-voltage high-CMRR CMOS instrumentation amplifier, 6(08), 97–100.

  10. Dal Fabbro, P. & dos Reis Filho, C. (2002). An integrated CMOS instrumentation amplifier with improved CMRR. In Proceedings. 15th symposium on integrated circuits and systems design (pp. 57–61).

  11. Sssafari, L., & Minaei, S. (2012). A novel resistor-free electronically adjustable current-mode instrumentation amplifier. Circuits, Systems, and Signal Processing, 32, 06.

    Google Scholar 

  12. Peteghem, P. M. V., Verbauwhede, I., & Sansen, W. M. C. (1985). Micropower high-performance sc building block for integrated low-level signal processing. IEEE Journal of Solid-State Circuits, 20(4), 837–844.

    Article  Google Scholar 

  13. Degrauwe, M., Vittoz, E., & Verbauwhede, I. (1984). A micropower cmos-instrumentation amplifier. In Solid-State Circuits Conference. ESSCIRC ’84. Tenth European (pp. 31–34).

  14. Enz, C. C., & Temes, G. C. (1996). Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proceedings of the IEEE, 84(11), 1584–1614.

    Article  Google Scholar 

  15. Yazicioglu, R. F., Merken, P., & Hoof, C. V. (2005). Integrated low-power 24-channel eeg front-end. Electronics Letters, 41(8), 457–458.

    Article  Google Scholar 

  16. Sutha, P. & VE, J. (2020). Implementation of a biopotential amplifier with a conventional and current-balancing approach for foetal ECG monitoring. Circuits, Systems, and Signal Processing,  39, 06

  17. Sanjay, R., Venkataramani, B., Kumaravel, S., Vadivelu, S. R., & Kakara, H. (2021) A low-noise area-efficient current feedback instrumentation amplifier. Circuits, Systems, and Signal Processing 40, 03

  18. Yin, S., Liu, X., Luo, Y., Yang, S., Tain, H., & Lin, L. (2021). A single-channel amplifier for simultaneously monitoring impedance respiration signal and ecg signal. Circuits, Systems, and Signal Processing, 40, 02.

    Article  Google Scholar 

  19. Nguyen, L., Perry, R., Seneres, L., & Seyedmahmoud, N.: Analog integrated circuit applications, worcester polytechnic institute.

  20. J. H. C. R. B. R. Michael Atkinson, Patrick Cousineau, Android Bluetooth Electrocardiogram - A personalized home monitoring application for heart health;.

  21. Vallabhuni, V., Reddy, C., Pittala, C., Vallabhuni, R., Saritha, M., Lavanya, M., Sonagiri, D., & Sreevani, M. (2021). ECG performance validation using operational transconductance amplifier with bias current. International Journal of System Assurance Engineering and Management, 12, 09.

    Google Scholar 

  22.  Assambo, C. & Burke, M.J. Low-frequency response and the skin-electrode interface in dry-electrode electrocardiography. University of Dublin, Trinity College, Ireland.

  23. He, D. D. A wearable heart monitor at the ear using ballistocardiogram (BCG) and electrocardiogram (ECG) with a nanowatt ecg heartbeat detection circuit. Ph.D. dissertation, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology.

  24. Rijnbeek, P., Kors, J., Witsenburg, M. (2001)“Minimum bandwidth requirements for recording of pediatric electrocardiograms,” PubMed, pp. 3087–3090

  25. Ţaralunga, D.-D., Ungureanu, G.-M., I. Gussi,  Strungaru, R. &  Wolf, W. (2014) Fetal ecg extraction from abdominal signals: a review on suppression of fundamental power line interference component and its harmonics. Computational and Mathematical Methods in Medicine.

  26. Sun, P., Zhao, M., Wu, X., & Liu, Q. (2012) A capacitively-coupled biomedical instrumentation amplifier employing chopping and auto-zeroing, 11, pp. 61–64.

  27. Wang, T. Y., Liu, L. H., & Peng, S. Y. (2015). A power-efficient highly linear reconfigurable biopotential sensing amplifier using gate-balanced pseudoresistors. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(2), 199–203.

    Google Scholar 

  28. Zhang, F., Holleman, J., & Otis, B. P. (2012). Design of ultra-low power biopotential amplifiers for biosignal acquisition applications. IEEE Transactions on Biomedical Circuits and Systems, 6(4), 344–355.

    Article  Google Scholar 

  29. Analog Front-End Design for ECG Systems Using Delta-Sigma ADCs;. Texas Instrument, Application Report, SBAA160A, 2010.

  30. TI, ECG and EEG Applications, Quick Reference Guide;. Texas Instrument, syt416.pdf.

  31. Harrison, R. R., & Charles, C. (2003). A low-power low-noise cmos amplifier for neural recording applications. IEEE Journal of Solid-State Circuits, 38(6), 958–965.

    Article  Google Scholar 

  32. Assaad, R. S., & Silva-Martinez, J. (2009). The recycling folded cascode: A general enhancement of the folded cascode amplifier. IEEE Journal of Solid-State Circuits, 44(9), 2535–2542.

    Article  Google Scholar 

  33.  Garde, M.,  Lopez-Martin, A.,  Carvajal, R. & Ramirez-Angulo, J. (2018) Super class-ab recycling folded cascode OTA. IEEE Journal of Solid-State Circuits PP, 1–10

  34. Li, Y., Han, K., Tan, X., & Yan, N. (2010). Transconductance enhancement method for operational transconductance amplifiers. Electronics Letters, 46(10), 1321–1323.

    Article  Google Scholar 

  35. Lopez-Martin, A., Garde, M., Algueta, J., Cruz-Blas, C., Carvajal, R., & Ramirez-Angulo, J. (2017). Enhanced single-stage folded cascode OTA suitable for large capacitive loads. IEEE Transactions on Circuits and Systems II: Express Briefs, 5, 1–1.

    Google Scholar 

  36. Anisheh, S., Shamsi, H., & Mirhassani, M. (2017). Positive feedback technique and split-length transistors for DC-gain enhancement of two stage op-amps. IET Circuits, Devices and Systems, 11, 01.

    Article  Google Scholar 

  37. Fateh, S., Schönle, P., Bettini, L., Rovere, G., Benini, L., & Huang, Q. (2015). A reconfigurable 5-to-14 bit sar adc for battery-powered medical instrumentation. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(11), 2685–2694.

    Article  MathSciNet  MATH  Google Scholar 

  38. Harrison, R. R. (2008). The design of integrated circuits to observe brain activity. Proceedings of the IEEE, 96(7), 1203–1216.

    Article  Google Scholar 

  39.  Sun, P.,  Zhao, M.,  Wu, X. &  Liu, Q. (2012). A capacitively-coupled biomedical instrumentation amplifier employing chopping and auto-zeroing. In 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nov , pp. 61–64.

  40. Monteiro, M., Klimach, H. & Bampi, S. (2014) High linearity and large output swing sub-Hz pre-amplifier for portable biomedical applications. In: Proceedings, SBCCI 2014 - 27th symposium on integrated circuits and systems design: chip in Aracaju, 09 .

  41. Pourasharf, S., Ramirez-Angulo, J., Lopez-Martin, A., Carvajal, R., & Diaz-sanchez, A. (2017). 0.18-V supply voltage gate-driven PGA with 0.7-Hz to 2-kHz constant bandwidth and 0.15-W power dissipation. International Journal of Circuit Theory and Applications, 46, 07.

    Google Scholar 

  42. Rezaee Dehsorkh, H., Ravanshad, N., Lotfi, R., & Sodagar, A. (2011). Analysis and design of tunable amplifiers for implantable neural recording applications. IEEE Journal of Emerging and Selected Topics in Circuits and Systems, 1(12), 546–556.

    Article  Google Scholar 

  43. Ansari, F., & Yavari, M. (2022). A fully-differential chopper capacitively-coupled amplifier with high input impedance for closed-loop neural recording. Circuits Systems, and Signal Processing, 41(07), 1–27.

    Article  Google Scholar 

  44. Jha, P. (2018). Process Aware analog-centric single lead ECG acquisition and classification CMOS Frontend. Ph.D. dissertation, Department of Electrical Engineering, IIT Hyderabad, India.

  45. Jespers, P. (2010).The \(g_{m}/I_{D}\) Methodology, a sizing tool for low-voltage analog CMOS circuits: The semi-empirical and compact model approaches. Springer. ISBN : 9780387471013 (online).

  46. Binkley, D. (2008). Tradeoffs and optimization in analog CMOS design. Wiley.

    Book  Google Scholar 

  47. Vittoz, E. A., & Neyroud, O. (1979). A low-voltage CMOS bandgap reference. IEEE Journal of Solid-State Circuits, 14(3), 573–579.

    Article  Google Scholar 

  48. Sansen, W. M., Eynde, F. O., & Steyaert, M. (1988). A CMOS temperature-compensated current reference. IEEE Journal of Solid-State Circuits, 23(3), 821–824.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Jha.

Ethics declarations

Declarations

The authors have no relevant financial or non-financial interests to disclose. Also, the authors have no conflicts of interest to declare that are relevant to the content of this article.

Data availability:

This manuscript has no associated data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, P.K., Patra, P. & Dutta, A. \(\mathbf {g_{m}/I_{D}}\) Sizing and analysis of a recycling folded-cascode OTA for ECG signal conditioning in 0.18 \(\upmu\)m  CMOS technology. Analog Integr Circ Sig Process 115, 263–278 (2023). https://doi.org/10.1007/s10470-023-02159-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-023-02159-7

Keywords

Navigation