Skip to main content
Log in

Weyl Modules for Toroidal Lie Algebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

In this paper, we study Weyl modules for a toroidal Lie algebra \(\mathcal {T}\) with arbitrary n variables. Using the work of Rao (Pac. J. Math. 171(2), 511–528 1995), we prove that the level one global Weyl modules of \(\mathcal {T}\) are isomorphic to suitable submodules of a Fock space representation of \(\mathcal {T}\) up to a twist. As an application, we compute the graded character of the level one local Weyl module of \(\mathcal {T}\), thereby generalising the work of Kodera (Lett. Math. Phys. 110(11) 3053–3080 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Calixto, L., Lemay, J., Savage, A.: Weyl modules for Lie superalgebras. Proc. Amer. Math. Soc. 147(8), 3191–3207 (2019)

    Article  MathSciNet  Google Scholar 

  2. Chari, V., Fourier, G., Khandai, T.: A categorical approach to Weyl modules. Transform. Groups 15(3), 517–549 (2010)

    Article  MathSciNet  Google Scholar 

  3. Chari, V., Ion, B., Kus, D.: Weyl modules for the hyperspecial current algebra. Int. Math. Res. Not. IMRN 15, 6470–6515 (2015)

    Article  MathSciNet  Google Scholar 

  4. Chari, V., Le, T.: Representations of double affine Lie algebras(2003). A tribute to C. S. Seshadri (C hennai 2002), 199–219 (2002)

  5. Chari, V., Loktev, S.: Weyl, Demazure and fusion modules for the current algebra of \(\mathfrak {sl}_{r+1}\). Adv. Math. 207(2), 928–960 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chari, V., Pressley, A.: Weyl modules for classical and quantum affine algebras. Represent. Theory 5, 191–223 (2001)

    Article  MathSciNet  Google Scholar 

  7. Eswara Rao, S.: Iterated loop modules and a filtration for vertex representation of toroidal Lie algebras. Pac. J. Math. 171(2), 511–528 (1995)

    Article  MathSciNet  Google Scholar 

  8. Eswara Rao, S., Moody, R.V.: Vertex representations for n-toroidal Lie algebras and a generalization of the Virasoro algebra. Comm. Math. Phys. 159(2), 239–264 (1994)

    Article  MathSciNet  Google Scholar 

  9. Eswara Rao, S., Futorny, V., Sharma, SS.: Weyl modules associated to Kac-Moody Lie algebras. Comm. Algebra 44(12), 5045–5057 (2016)

    Article  MathSciNet  Google Scholar 

  10. Feigin, B., Loktev, S.: Multi-dimensional Weyl modules and symmetric functions. Comm. Math. Phys. 251(3), 427–445 (2004)

    Article  MathSciNet  Google Scholar 

  11. Frenkel, I.B., Kac, V.G.: Basic representations of affine Lie algebras and dual resonance models. Invent. Math. 62(1), 23–66 (1980/81)

    Article  MathSciNet  Google Scholar 

  12. Fourier, G., Littelmann, P.: Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions. Adv. Math. 211(2), 566–593 (2007)

    Article  MathSciNet  Google Scholar 

  13. Garland, H.: The arithmetic theory of loop algebras. J. Algebra 53 (2), 480–551 (1978)

    Article  MathSciNet  Google Scholar 

  14. Ion, B.: Nonsymmetric Macdonald polynomials and Demazure characters. Duke Math. J. 116(2), 299–318 (2003)

    Article  MathSciNet  Google Scholar 

  15. Kac, V.G.: Infinite-dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  16. Khandai, T.: Integrable irreducible representations of toroidal Lie algebras. J. Ramanujan Math. Soc. 34(1), 1–20 (2019)

    MathSciNet  Google Scholar 

  17. Kodera, R.: Level one Weyl modules for toroidal Lie algebras. Lett. Math. Phys. 110(11), 3053–3080 (2020)

    Article  MathSciNet  Google Scholar 

  18. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov-Reshetikhin crystals II. Alcove model, path model, and P = X. Int. Math. Res. Not. IMRN 14, 4259–4319 (2017)

    MathSciNet  Google Scholar 

  19. Kus, D.: Representations of Lie superalgebras with fusion flags. Int. Math. Res. Not. IMRN 17, 5455–5485 (2018)

    Article  MathSciNet  Google Scholar 

  20. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. The Clarendon Press, 2nd edn. Oxford University Press, New York (1995)

    Book  Google Scholar 

  21. Moody, R.V., E Rao, S., Yokonuma, T.: Toroidal Lie algebras and vertex representations. Geom. Dedicata 35(1-3), 283–307 (1990)

    Article  MathSciNet  Google Scholar 

  22. Brito, M., Calixto, L., Macedo, T.: Local Weyl modules and fusion products for the current superalgebra \(\mathfrak {sl}(1|2)[t]\). J. Algebra 604, 224–256 (2022)

    Article  MathSciNet  Google Scholar 

  23. Naoi, K.: Weyl modules, Demazure modules and finite crystals for non-simply laced type. Adv. Math. 229(2), 875–934 (2012)

    Article  MathSciNet  Google Scholar 

  24. Sanderson, Y.B.: On the connection between Macdonald polynomials and Demazure characters. J. Algebraic Combin. 11(3), 269–275 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank S. Eswara Rao, who suggested this problem and for some helpful discussions. The authors would also like to thank S. Viswanath and Tanusree Khandai for some helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin S. Sharma.

Ethics declarations

Conflict of Interests

All authors certify that they have no affiliations with or involvement in any organisation or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Presented by: Vyjayanthi Chari

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: on Symmetric Functions

Appendix: on Symmetric Functions

The aim of this appendix is to review some of the basic notions about symmetric functions which we require in the proof of Proposition 4.4. Most of the material covered here can be found in [20]. Let x1,x2,⋯ ,xn be a finite set of indeterminates. The symmetric group on n letters Sn acts on \(\mathbb Z[x_{1}, x_{2}, \cdots , x_{n}]\), the ring of polynomials in n variables by permuting the variables. The ring of symmetric polynomials is defined by \( {\Lambda }(n) := \{ f \in \mathbb {Z}[x_{1}, \cdots , x_{n}]: \sigma .f = f \forall \sigma \in S_{n}\}\). Let Λ(n)k be the space of homogeneous symmetric polynomials of degree k. Then Λ(n) is a graded ring with \({\Lambda } (n) = \bigoplus _{k} {\Lambda } (n)_{k}\).

If we have a countable infinite set of indeterminates, say x1,x2,⋯, we consider the ring R of power series in x1,x2,⋯ of bounded degree. Hence, elements of R can be infinite sums, but only in a finite number of degrees. Let \(S_{\infty }\) be the group of all permutations of {1, 2,⋯}. Then \(S_{\infty }\) acts on R, and we define the ring of symmetric functions \({\Lambda } :=\{f \in R: \sigma . f=f for all \sigma \in S_{\infty }\}\). This is a subring of R. For each n there is a surjective homomorphism \({\Lambda } \rightarrow {\Lambda }(n)\) obtained by setting xn+ 1 = xn+ 2 = ⋯ = 0. We also have a surjective homomorphism of rings \({\Lambda } (n+1) \rightarrow {\Lambda } (n)\) by setting xn+ 1 = 0 and that restricts to a surjective map \({\Lambda } (n+1)_{k} \rightarrow {\Lambda }(n)_{k}\) for all k and the map is bijective if and only if kn. We set \(\displaystyle {{\Lambda }_{k}=\varprojlim _{k} {\Lambda }(n)_{k}}\). Then \({\Lambda }=\displaystyle {\bigoplus _{k \geq 0} {\Lambda }_{k}}\). If A is any commutative ring, we write \({\Lambda }_{A}:={\Lambda } \otimes _{\mathbb Z} A\) for the ring of symmetric functions with coefficients in A.

There are various \(\mathbb {Z}\)-bases of the ring, some of which we shall review. They all are indexed by partitions. A partition λ is a (finite or infinite) weakly decreasing sequence λ = (λ1,λ2,⋯) of non-negative integers with finitely many non-zero terms. Let \(\mathcal P\) denote the set of all partitions. Given two partitions λ and μ we say that λμ if and only if |λ| = |μ| and λ1 + λ2 + ⋯ + λrμ1 + μ2 + ⋯ + μr for all r ≥ 1. For a partition λ = (λ1,λ2,⋯), the conjugate partition is defined by \(\lambda ^{\prime }=(\lambda _{1}^{\prime }, \lambda _{2}^{\prime }, {\cdots } )\), where \(\lambda _{i}^{\prime }\) is the number of j’s such that λji.

For a partition λ = (λ1,λ2,⋯) we define \(x^{\lambda }:=x_{1}^{\lambda _{1}}x_{2}^{\lambda _{2}}{\cdots } \). The monomial symmetric function mλ is the sum of all distinct monomials obtainable from xλ by permutations of the x’s. In particular, when \(\lambda =(1^{r})=: (\underbrace {1,1,1,{\cdots } ,1}_{r}, 0,0, {\cdots } )\) we have \(\displaystyle {m_{(1^{r})}=e_{r}=\sum \limits _{i_{1} <i_{2}< {\cdots } <i_{r}} x_{i_{1}}x_{i_{2}}{\cdots } x_{i_{r}}}\), the r-th elementary symmetric polynomial. The er’s are algebraically independent over \(\mathbb Z\). At the other extreme when λ = (r) := (r, 0, 0,⋯) we have \(m_{(r)}=p_{r}=\sum {x_{i}^{r}}\), the r-th power sum. It is clear that every f ∈Λ is uniquely expressible as a finite linear combination of the mλ’s, so that \((m_{\lambda })_{\lambda \in \mathcal P}\) is a \(\mathbb Z\)-basis of Λ. For each r ≥ 0, the r-th complete symmetric polynomial hr, is the sum of all monomials of total degree r in the variables x1,x2,⋯ so that \(h_{r}={\sum }_{|\lambda |=r} m_{\lambda }\). The map \(\omega : {\Lambda } \rightarrow {\Lambda }\) defined by eλhλ is an involution of graded rings and hence hr’s are also algebraically independent over \(\mathbb Z\).

For any partition λ we define \(e_{\lambda }:=e_{\lambda _{1}}e_{\lambda _{2}}{\cdots } \), \(p_{\lambda }:=p_{\lambda _{1}}p_{\lambda _{2}} {\cdots } \) and \(h_{\lambda }:=h_{\lambda _{1}}h_{\lambda _{2}} {\cdots } \) as the elementary symmetric function, the power sum symmetric function and the complete symmetric function respectively for the partition λ. It is easy to see that

$$e_{\lambda^{\prime}}=m_{\lambda}+\sum\limits_{\mu < \lambda} a_{\lambda, \mu} m_{\mu}$$

for some nonnegative integers aλ,μ. Hence \((e_{\lambda })_{\lambda \in \mathcal P}\) form another \(\mathbb Z\)-basis of Λ. Again since ω is an involution, the set \((h_{\lambda })_{\lambda \in \mathcal P}\) is yet another \(\mathbb Z\)-basis of Λ.

The generating function for the er, hr and pr are \(E(t)={\sum }_{r \geq 0} e_{r}t^{r}=\prod (1+x_{i}t)\), \(H(t)={\sum }_{r \geq 0} h_{r}t^{r}=\prod (1-x_{i}t)^{-1}\) and \(P(t)={\sum }_{r \geq 1} p_{r}t^{r-1}={\sum }_{r \geq 1} \frac {x_{i}}{(1-x_{i}t)}\) respectively and they satisfy the following identities.

$$E(t)H(-t)=1, P(t)=\frac{H^{\prime}(t)}{H(t)} and P(-t)=\frac{E^{\prime}(t)}{E(t)}.$$

As a result for each n ≥ 1 we get that

$$\sum\limits_{r=0}^{n} (-1)^{r} e_{r}h_{n-r}=0,$$
$$nh_{n}=\sum\limits_{r=1}^{n} p_{r}h_{n-r}$$

and

$$ ne_{n}=\sum\limits_{r=1}^{n} (-1)^{r-1}p_{r}e_{n-r}. $$
(1)

From the above expression it follows that \(\mathbb Q[h_{1}, h_{2}, \cdots , h_{n}]=\mathbb Q[p_{1}, p_{2},{\cdots } ,p_{n}]\) for all n ≥ 1. Letting \(n \rightarrow \infty \) we get that \({\Lambda }_{\mathbb Q}= \mathbb Q[h_{1},h_{2}, {\cdots } ]=\mathbb Q[p_{1}, p_{2},{\cdots } ]\). So \((p_{\lambda })_{\lambda \in \mathcal P}\) form a \(\mathbb Q\)-basis of \({\Lambda }_{\mathbb Q}\) but not a \(\mathbb Z\)-basis of Λ.

We know that \(P(t) = \frac {d}{dt} log H(t)\). Integrating both sides imposing the boundary condition log H(0) = 0 and applying the exponential map, we get that,

$$H(t)=\exp (\sum\limits_{n \geq 1} \frac{p_{n}t^{n}}{n})=\prod\limits_{n \geq 1} \exp (\frac{p_{n}t^{n}}{n})=\prod\limits_{n \geq 1}\sum\limits_{d \geq 0} \frac{{p_{n}^{d}}t^{nd}}{n^{d}d!}=\sum\limits_{\lambda} \frac{p_{\lambda}}{z_{\lambda}}t^{|\lambda|},$$

where \(z_{\lambda }= {\prod }_{i \geq 1} i^{m_{i}(\lambda )}m_{i}(\lambda )!\) and mi(λ) is the number of i appears in λ.

Since the involution ω maps H(t) to E(t) and vice versa, we have ω(pn) = (− 1)n+ 1pn and as a result, for a partition λ we get that, ω(pλ) = 𝜖λpλ, where 𝜖λ = (− 1)|λ|−l(λ). Now by applying the involution ω to the above identity we get that,

$$E(t)=\exp (\sum\limits_{n \geq 1} (-1)^{n+1}\frac{p_{n}t^{n}}{n})=\sum\limits_{\lambda} \epsilon_{\lambda} \frac{p_{\lambda}}{z_{\lambda}}t^{|\lambda|}.$$

Replacing t by − t in the last identity we get that

$$ E(-t)= \sum\limits_{n \geq 0} (-1)^{n} e_{n}t^{n}= \exp (-\sum\limits_{n \geq 1} \frac{p_{n}t^{n}}{n})=\sum\limits_{\lambda} (-1)^{(2|\lambda|-l(\lambda))} \frac{p_{\lambda}}{z_{\lambda}}t^{|\lambda|}. $$
(2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Pattanayak, S.K. & Sharma, S.S. Weyl Modules for Toroidal Lie Algebras. Algebr Represent Theor 26, 2605–2626 (2023). https://doi.org/10.1007/s10468-022-10187-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-022-10187-6

Keywords

Mathematics Subject Classification (2010)

Navigation