Skip to main content
Log in

Basic representations of affine Lie algebras and dual resonance models

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Dixmier, J.: Algèbres enveloppantes, Paris: Gauthier-Villars 1974

    Google Scholar 

  2. Garalnd, H.: The arithemtic theory of loop algebras, J. Algebra53, 480–551 (1978)

    Article  Google Scholar 

  3. Gelfand, I.M., Vilenkin, N.Y.: Generalized Functions, Vol. 4, Application of Harmonic Analysis, New York: Academic Press 1964

    Google Scholar 

  4. Kac, V.G.: Simple irreducible graded Lie algebras of finite growth, Math. USSR-Izv.2, 1271–1311 (1968)

    Google Scholar 

  5. Kac, V.G.: Infinite-dimensional Lie algebras and Dedekind's η-function, Functional Anal. Appl.8, 68–70 (1974)

    Google Scholar 

  6. Kac, V.G.: Infinite dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula, Advances in Math.30, 85–136 (1978)

    Article  Google Scholar 

  7. Kac, V.G.: Contravariant form for Lie algebras and superalgebras, Lecture Notes in Physics94, 441–445 (1979)

    Google Scholar 

  8. Kac, V.G., Kazhdan, D.A., Lepowsky, J., Wilson, R.L.: Realization of the basic representations of the Euclidean Lie algebras, in press (1980)

  9. Kac, V.G., Peterson, D.H.: Affine Lie algebras and Hecke modular forms. Bull. Amer. Math. Soc.3 (1980)

  10. Mandelstam, S.: Dual-resonance models, Physics Rep.13, 259–353 (1974)

    Article  Google Scholar 

  11. Moody, R.V.: A new class of Lie algebras, J. Algebra10, 211–230 (1968)

    Article  Google Scholar 

  12. Schwartz, J.H.: Dual-resonance theory, Physics Rep.8, 269–335 (1973)

    Article  Google Scholar 

  13. Sugawara, H.: A field theory of currents, Physical Reviews170, 1659 (1968)

    Article  Google Scholar 

  14. Tits, J.: Sur les constantes de structure et le théorème d'existence des algèbres de Lie semi-simple, Inst. Hautes Études Sci. Publ. Math.,31, 21–58 (1966)

    Google Scholar 

  15. Vershik, A.M., Gelfand, I.M., Graev, M.I.: Representations of the groupSL(2,R) whereR is a ring of functions, Russian Math. Surveys,28, 83–128 (1973)

    Google Scholar 

  16. Vershik, A.M., Gelfand, I.M., Graev, M.I.: Representations of the group of smooth mappings of a manifoldX into a compact Lie group, Compositio Math.35, 299–339 (1977)

    Google Scholar 

  17. Bars, I., Garland, H.: Private communication

  18. Kac, V.G.: An elucidation of “Infinite-dimensional algebras ... and the very strange formula.”E (1)8 and the cube root of the modular invariantj. Advances in Math.35, 264–273 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frenkel, I.B., Kac, V.G. Basic representations of affine Lie algebras and dual resonance models. Invent Math 62, 23–66 (1980). https://doi.org/10.1007/BF01391662

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01391662

Keywords

Navigation