Skip to main content
Log in

Ringel-Hall Algebras Beyond their Quantum Groups I: Restriction Functor and Green Formula

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

In this paper, we generalize the categorifical construction of a quantum group and its canonical basis introduced by Lusztig to the generic form of the whole Ringel-Hall algebra. We clarify the explicit relation between the Green formula and the restriction functor. By a geometric way to prove the Green formula, we show that the compatibility of multiplication and comultiplication of a Ringel-Hall algebra can be categorified under Lusztig’s framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque, 100 (1982)

  2. Bernstein, J., Lunts, V.: Equivariant Sheaves and Functors. Springer (1994)

  3. Bozec, T.: Quivers with loops and perverse sheaves. Math. Ann. 362(3), 773–797 (2015)

    Article  MathSciNet  Google Scholar 

  4. Braden, T.: Hyperbolic localization of intersection cohomology. Transform. Groups 8(3), 209–216 (2003)

    Article  MathSciNet  Google Scholar 

  5. Crawley-Boevey, B.: Lectures on representations of quivers, notes for a graduate course. available at https://www.math.uni-bielefeld.de/~wcrawley/quivlecs.pdf (1992)

  6. Green, J. A.: Hall algebras, hereditary algebras and quantum groups. Invent. Math. 120(2), 361–377 (1995)

    Article  MathSciNet  Google Scholar 

  7. Hernandez, D., Leclerc, B.: Quantum Grothendieck rings and derived Hall algebras. J. Reine Angew. Math. 701, 77–126 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Hua, J.: Counting representations of quivers over finite fields. J. Algebra 226(2), 1011–1033 (2000)

    Article  MathSciNet  Google Scholar 

  9. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups I. Represent. Theory 13, 309–347 (2009)

    Article  MathSciNet  Google Scholar 

  10. Kiehl, R., Weissauer, R.: Weil Conjectures, Perverse Sheaves and l’adic Fourier Transform. Springer (2001)

  11. Kimura, Y., Qin, F.: Graded quiver varieties, quantum cluster algebras and dual canonical basis. Adv. Math. 262, 261–312 (2014)

    Article  MathSciNet  Google Scholar 

  12. Lin, Z.: Lusztig’s geometric approach to Hall algebras. In: Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry, pp. 349–364, Fields Inst. Commun. 40. Amer. Math. Soc., Providence (2004)

  13. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Amer. Math. Soc. 3(2), 447–498 (1990)

    Article  MathSciNet  Google Scholar 

  14. Lusztig, G.: Quivers, perverse sheaves, and quantized enveloping algebras. J. Amer. Math. Soc. 4(2), 365–421 (1991)

    Article  MathSciNet  Google Scholar 

  15. Lusztig, G.: Introduction to Quantum Groups. Birkhauser (1992)

  16. Lusztig, G.: Canonical bases and Hall algebras. In: Representation Theories and Algebraic Geometry (Montreal, PQ, 1997), pp. 365–399, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514. Kluwer Acad. Publ., Dordrecht (1998)

  17. Nakajima, H.: Quiver varieties and Kac-Moody algebras. Duke Math. J. 91(3), 515–560 (1998)

    Article  MathSciNet  Google Scholar 

  18. Nakajima, H.: Quiver varieties and cluster algebras. Kyoto J. Math. 51(1), 71–126 (2011)

    Article  MathSciNet  Google Scholar 

  19. Peng, L.: Lie algebras determined by finite Auslander-Reiten quivers. Comm. Algebra 26(9), 2711–2725 (1998)

    Article  MathSciNet  Google Scholar 

  20. Riedtmann, C.: Lie algebras generated by indecomposables. J. Algebra 170(2), 526–546 (1994)

    Article  MathSciNet  Google Scholar 

  21. Ringel, C. M.: Hall algebras and quantum groups. Invent. Math. 101(1), 583–591 (1990)

    Article  MathSciNet  Google Scholar 

  22. Ringel, C. M.: Green’s theorem on Hall algebras. In: Representation Theory of Algebras and Related Topics (Mexico City, 1994), pp. 185–245, CMS Conf. Proc., p. 19. Amer. Math. Soc., Providence (1996)

  23. Rouquier, R.: Quiver Hecke algebras and 2-Lie algebras. Algebra Colloq. 19(2), 359–410 (2012)

    Article  MathSciNet  Google Scholar 

  24. Schiffmann, O.: Lectures on Hall algebras. In: Geometric Methods in Representation Theory. II, pp. 1–141, Smin. Congr., 24-II. Soc. Math., France (2012)

  25. Schiffmann, O.: Lectures on canonical and crystal bases of Hall algebras. In: Geometric Methods in Representation Theory. II, pp. 143–259, Smin. Congr., 24-II. Soc. Math., France (2012)

  26. Varagnolo, M., Vasserot, E.: Canonical bases and KLR-algebras. J. Reine Angew. Math. 659, 67–100 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Webster, B.: Geometry and categorification. In: Categorification in Geometry, Topology, and Physics, pp. 1–22, Contemp. Math., 684. Amer. Math. Soc., Providence (2017)

  28. Xiao, J.: Drinfeld double and Ringel-Green theory of Hall algebras. J. Algebra 190(1), 100–144 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Hiraku Nakajima for telling us that Lusztig’s restriction is a hyperbolic localization and Reference [4]. The second named author thanks Sheng-Hao Sun for explaining the contents in Reference [10] and many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Zhao.

Additional information

Presented by: Michel Van den Bergh

To the memory of Professor J. A. Green.

Jie Xiao was supported by NSF of China (No. 11671221), Fan Xu was supported by NSF of China (No. 11471177, 11771217) and Minghui Zhao was supported by NSF of China (No. 11701028, 11771445).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Xu, F. & Zhao, M. Ringel-Hall Algebras Beyond their Quantum Groups I: Restriction Functor and Green Formula. Algebr Represent Theor 22, 1299–1329 (2019). https://doi.org/10.1007/s10468-018-9821-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-018-9821-5

Keywords

Mathematics Subject Classification (2010)

Navigation