Skip to main content
Log in

Nonparametric regression with warped wavelets and strong mixing processes

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We consider the situation of a univariate nonparametric regression where either the Gaussian error or the predictor follows a stationary strong mixing stochastic process and the other term follows an independent and identically distributed sequence. Also, we estimate the regression function by expanding it in a wavelet basis and applying a hard threshold to the coefficients. Since the observations of the predictor are unequally distant from each other, we work with wavelets warped by the density of the predictor variable. This choice enables us to retain some theoretical and computational properties of wavelets. We propose a unique estimator and show that some of its properties are the same for both model specifications. Specifically, in both cases the coefficients are unbiased and their variances decay at the same rate. Also the risk of the estimator, measured by the mean integrated square error is almost minimax and its maxiset remains unaltered. Simulations and an application illustrate the similarities and differences of the proposed estimator in both situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrews DWK (1983). First order autoregressive processes and strong mixing. Tech. Rep. 664, Cowles Foundation for Research in Economics at Yale University, New Haven, Connecticut.

  • Antoniadis, A., Fan, J. (2001). Regularization of wavelet approximations. Journal of the American Statistical Association, 96(455), 939–967.

  • Antoniadis, A., Grégoire, G., Vial, P. (1997). Random design wavelet curve smoothing. Statistics and Probability Letters, 35(3), 225–232.

  • Baraud, Y., Comte, F., Viennet, G. (2001). Adaptive estimation in autoregression or \(\beta\)-mixing regression via model selection. The Annals of Statistics, 29(3), 839–875.

  • Baumöhl, E. (2019). Are cryptocurrencies connected to forex? A quantile cross-spectral approach. Finance Research Letters, 29, 363–372.

    Article  Google Scholar 

  • Bradley, R. C. (2005). Basic properties of strong mixing conditions. a survey and some open questions. Probability Surveys, 2, 107–144. https://doi.org/10.1214/154957805100000104.

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, T. T., Brown, L. (1998). Wavelet shrinkage for nonequispaced samples. The Annals of Statistics, 26(5), 1783–1799.

  • Cai, T. T., Brown, L. (1999). Wavelet estimation for samples with random uniform design. Statistics and Probability Letters, 42, 313–321.

  • Chesneau, C. (2013). On the adaptive wavelet estimation of a multidimensional regression function under \(\alpha\)-mixing dependence: Beyond the standard assumptions on the noise. Commentationes Mathematicae Universitatis Carolinae, 4, 527–556.

    MathSciNet  MATH  Google Scholar 

  • Chesneau, C. (2014). A general result on the mean integrated squared error of the hard thresholding wavelet estimator under \(\alpha\)-mixing dependence. Journal of Probability and Statistics, 2014, 1–12. https://doi.org/10.1155/2014/403764.

    Article  MathSciNet  MATH  Google Scholar 

  • Chesneau, C., Willer, T. (2007). Numerical performances of a warped wavelet estimation procedure for regression in random design. https://hal.archives-ouvertes.fr/hal-00133831/document

  • Danthine, J., Donaldson, J. (2014). Intermediate financial theory. Amsterdam: Academic Press Advanced Finance, Elsevier Science.

  • Davidson, J. (1994). Stochastic limit theory. New York: Oxford University Press.

    Book  Google Scholar 

  • Delouille, V., Franke, J., von Sachs, R. (2001). Nonparametric stochastic regression with design-adapted wavelets. Sankhyā:The Indian Journal of Statistics, 63, 328–366. (series A, Pt. 3, Special issue on Wavelets).

  • Donoho, D. L., Johnstone, I. M. (1994). Ideal spatial adaptation via wavelet shrinkage. Biometrika, 81, 425–455.

  • Donoho, D. L., Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90, 1200–1224.

  • Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., Picard, D. (1995). Wavelet shrinkage: Asymptopia? Journal of the Royal Statistical Society Series B Statistical Methodology, 57, 301–369.

  • García-Cuerva, J., Rubio de Francia, J. L. (1985). Weighted norm inequalities and related topics. Mathematics Studies: North-Holland.

  • Gómez-González, J. E., Sanabria-Buenaventura, E. M. (2014). Non-parametric and semi-parametric asset pricing: An application to the Colombian stock exchange. Economic Systems, 38(2), 261–268.

  • Hall, P., Turlach, B. A. (1997). Interpolation methods for nonlinear wavelet regression with irregularly spaced design. The Annals of Statistics, 25(5), 1912–1925.

  • Härdle, W. (1990). Applied nonparametric regression. no. 19 in Econometric society monographs, Cambridge University Press, Cambridge, UK.

  • Härdle, W., Trimborn, S. (2015). CRIX or evaluating Blockchain based currencies. Report no. 42/2015, Mathematisches Forschungsinstitut Oberwolfach, http://crix.hu-berlin.de/data/preliminary_OWR_2015_42.pdf, meeting on The Mathematics and Statistics of Quantitative Risk Management, organized by Richard Davis, Paul Embrechts, Thomas Mikosch and Andrew Patton, 20–26 September 2015.

  • Härdle, W., Lütkepohl, H., Chen, R. (1997). A review of nonparametric time series analysis. International Statistical Review, 65(1), 49–72.

  • Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A. (1998). Wavelets, approximation, and statistical applications. lecture notes in statistics (Vol. 129). New York: Springer.

  • Kerkyacharian, G., Picard, D. (2004). Regression in random design and warped wavelets. Bernoulli, 10(6), 1053–1105.

  • Krebs, J. T. N. (2018). Non-parametric regression for spatially dependent data with wavelets. Statistics, 52(6), 1270–1308. https://doi.org/10.1080/02331888.2018.1506924.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, D. K. C., Guo, L., Wang, Y. (2018). Cryptocurrency: A new investment opportunity? The Journal of Alternative Investments, 20(3), 16–40.

  • Li, L. (2016). Nonparametric regression on random fields with random design using wavelet method. Statistical Inference for Stochastic Processes, 19(1), 51–69. https://doi.org/10.1007/s11203-015-9119-8.

    Article  MathSciNet  MATH  Google Scholar 

  • Lintner, J. (1965). The valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics, 47(1), 13–37.

    Article  Google Scholar 

  • Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34(4), 768–783. https://doi.org/10.2307/1910098.

    Article  Google Scholar 

  • Muckenhoupt, B. (1972). Weighted norm inequalities for the Hardy maximal function. Transactions of the American Mathematical Society, 165, 207–226.

    Article  MathSciNet  Google Scholar 

  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Originally posted to the cryptography mailing list The Cryptography Mailing, on November 1st, 2008.

  • Nason, G. (2016). wavethresh: Wavelets statistics and transforms. http://CRAN.R-project.org/package=wavethresh, r package version 4.6.8.

  • Ogden, R. T. (1997). Essential wavelets for statistical applications and data analysis (1st ed.). Boston: Birkhäuser.

    Book  Google Scholar 

  • Péter Erdös, D. Z., Ormos, Mihály. (2011). Non-parametric and semi-parametric asset pricing. Economic Modelling, 28(3), 1150–1162.

  • Porto, R., Morettin, P., Percival, D., Aubin, E. (2016). Wavelet shrinkage for regression models with random design and correlated errors. Brazilian Journal of Probability and Statistics, 30(4), 614–652. https://doi.org/10.1214/15-BJPS296.

  • Porto, R.F. (2008). Regressão não-paramétrica com erros correlacionados via ondaletas. PhD thesis, University of São Paulo.

  • Porto, R. F., Morettin, P. A., Aubin, E. C. Q. (2012). Regression with autocorrelated errors using design-adapted Haar wavelets. Journal of Time Series Econometrics, 4(1).

  • R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/.

  • Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341–360.

    Article  MathSciNet  Google Scholar 

  • Ruppert, D., Wand, M., Carroll, R. (2003). Semiparametric regression. Cambridge series in statistical and probabilistic mathematics, Cambridge University Press, https://books.google.com.br/books?id=Y4uEvXFP2voC.

  • Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425–442.

    MathSciNet  Google Scholar 

  • Silverman, B. (1986). Density estimation for statistics and data analysis. Chapman & Hall/CRC Monographs on statistics & applied probability, Taylor & Francis, https://books.google.com.br/books?id=e-xsrjsL7WkC.

  • Sovbetov, Y. (2018). Factors influencing cryptocurrency prices: Evidence from bitcoin, ethereum, dash, litcoin, and monero. Journal of Economics and Financial Analysis, 2(22), 1–27.

    Google Scholar 

  • Treynor, J.L. (1961). Market value, time, and risk, edited version of an unpublished personal communication to professor John Virgil Lintner, available at SSRN: https://ssrn.com/abstract=2600356 or http://dx.doi.org/10.2139/ssrn.2600356.

  • Treynor, J.L. (1962). Toward a theory of market value of risky assets, edited version of an unpublished manuscript, available at SSRN: https://ssrn.com/abstract=628187 or http://dx.doi.org/10.2139/ssrn.628187.

  • Triebel, H. (1992). Theory of function spaces II. monographs in mathematics, Springer Basel, https://books.google.com.br/books?id=Nf3LPOf0Q3kC.

  • Trimborn, S., & Härdle, W. (2016). CRIX an index for blockchain based currencies. SFB 649 Discussion Paper 2016-021, Humboldt-Universität zu Berlin, Germany, http://crix.hu-berlin.de/data/CRIXpaper.pdf, sFB 649 Economic Risk.

  • Tsybakov, A. (2009). Introduction to nonparametric estimation. Springer series in statistics. New York: Springer.

    Book  Google Scholar 

  • Wasserman, L. (2006). All of nonparametric statistics. Springer texts in statistics. New York: Springer.

    MATH  Google Scholar 

  • Van der Wijst, D. (2013). Finance: a quantitative introduction. New York: Cambridge University Press.

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous referees for suggestions that greatly improved the text. PAM acknowledges the partial support of FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), grant 2018/04654-9 and LMG acknowledges the partial support of FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), grant 2019/23078-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz M. Gómez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 457 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, L.M., Porto, R.F. & Morettin, P.A. Nonparametric regression with warped wavelets and strong mixing processes. Ann Inst Stat Math 73, 1203–1228 (2021). https://doi.org/10.1007/s10463-021-00789-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-021-00789-0

Keywords

Navigation