Skip to main content
Log in

Nonparametric regression on random fields with random design using wavelet method

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

We consider non-linear wavelet-based estimators of spatial regression functions with (known) random design on strictly stationary random fields, which are indexed by the integer lattice points in the \(N\)-dimensional Euclidean space and are assumed to satisfy some mixing conditions. We investigate their asymptotic rates of convergence based on thresholding of empirical wavelet coefficients and show that these estimators achieve nearly optimal convergence rates within a logarithmic term over a large range of Besov function classes \(B^{s}_{p,q}\). Therefore, wavelet estimators still achieve nearly optimal convergence rates for random fields and provide explicitly the extraordinary local adaptability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovich F, De Feis I, Sapatinas T (2009) Optimal testing for additivity in multiple nonparametric regression. Ann Inst Stat Math 61:691–714

    Article  MathSciNet  MATH  Google Scholar 

  • Anselin L, Florax RJGM (1995) New direction in spatial econometrics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. CRC monographs on statistics & applied probability, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Biau G (2003) Spatial kernel density estimation. Math Methods Stat 12:371–390

    MathSciNet  Google Scholar 

  • Biau G, Cadre B (2004) Nonparametric spatial prediction. Stat Inference Stoch Process 7:327–349

    Article  MathSciNet  MATH  Google Scholar 

  • Bradley RC, Tran LT (1999) Density estimation for nonisotropic random fields. J Stat Plan Inference 81:51–70

    Article  MathSciNet  MATH  Google Scholar 

  • Brown LD, Cai TT, Zhou H (2010) Nonparametric regression in exponential families. Ann Stat 38:2005–2046

    Article  MathSciNet  MATH  Google Scholar 

  • Cai T (1999) Adaptive wavelet estimation: a block thresholding and oracle inequality approach. Ann Stat 27:898–924

    Article  MathSciNet  MATH  Google Scholar 

  • Cai T, Yuan M (2011) Optimal estimation of the mean function based on discretely sampled functional data: phase transition. Ann Stat 39:2330–2355

    Article  MathSciNet  MATH  Google Scholar 

  • Carbon M, Hallin M, Tran LT (1996) Kernel density estimation for random fields: the \(L_1\) theory. J Nonparametr Stat 6:157–170

    Article  MathSciNet  MATH  Google Scholar 

  • Carbon M, Tran LT, Wu B (1997) Kernel density estimation for random fields (density estimation for random fields). Stat Probab Lett 36:115–125

    Article  MathSciNet  MATH  Google Scholar 

  • Carbon M, Francq C, Tran LT (2007) Kernel regression estimation for random fields. J Stat Plan Inference 137:778–798

    Article  MathSciNet  MATH  Google Scholar 

  • Chaubey YP, Chesneau C, Shirazi E (2013) Wavelet-based estimation of regression function for dependent biased data under a given random design. J Nonparametr Stat 25:53–71

    Article  MathSciNet  MATH  Google Scholar 

  • Chesneau C (2007) Wavelet block thresholding for samples with random design: a minimax approach under the \(L_p\) risk. Electron J Stat 1:331–346

    Article  MathSciNet  MATH  Google Scholar 

  • Chesneau C, Fadili J, Maillot B (2015) Adaptive estimation of an additive regression function from weakly dependent data. J Multivar Anal 133:77–94

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen A, Daubechies I, Vial P (1993) Wavelets on the interval and fast wavelet transforms. Appl Comput Harmon Anal 1:54–82

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie NAC (1991) Statistics for spatial data. John Wiley & Sons Inc, New York

    MATH  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Deo CM (1973) A note on empirical processes of strong-mixing sequences. Ann Probab 1:870–875

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL, Johnstone IM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinking. J Am Stat Assoc 90:1200–1224

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL, Johnstone IM (1998) Minimax estimation via wavelet shrinkage. Ann Stat 26:879–921

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL, Johnstone IM, Kerkyacharian G, Picard D (1996) Density estimation by wavelet thresholding. Ann Stat 24:508–539

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman & Hall, London

    MATH  Google Scholar 

  • Guyon X (1995) Random fields on a network. Springer, New York

    MATH  Google Scholar 

  • Hallin M, Lu Z, Tran LT (2001) Density estimation for spatial linear processes. Bernoulli 7:657–668

    Article  MathSciNet  MATH  Google Scholar 

  • Hallin M, Lu Z, Tran LT (2004) Local linear spatial regression. Ann Stat 32:2469–2500

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle W (1990) Applied nonparametric regression. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Härdle W, Kerkyacharian G, Picard D, Tsybakov A (1998) Wavelets, approximation and statistical applications. Lecture notes in statistics 129. Springer, New York

    Book  MATH  Google Scholar 

  • Ibragimov IA, Linnik YuV (1971) Independent and stationary sequences of random variables. Wolters-Noordhoff Publishing, Groningen

    MATH  Google Scholar 

  • Kerkyacharian G, Picard D (2004) Regression in random design and warped wavelets. Bernoulli 10:1053–1105

    Article  MathSciNet  MATH  Google Scholar 

  • Kulik R, Raimondo M (2009) Wavelet regression in random design with heteroscedastic dependent errors. Ann Stat 37:3396–3430

    Article  MathSciNet  MATH  Google Scholar 

  • Lepski O, Serdyukova N (2014) Adaptive estimation under single-index constraint in a regression model. Ann Stat 42:1–28

    Article  MathSciNet  MATH  Google Scholar 

  • Li L (2015) Nonparametric adaptive density estimation on random fields using wavelet method. Stat Probab Lett 96:346–355

    Article  MathSciNet  MATH  Google Scholar 

  • Li L, Xiao Y (2015) Wavelet-based estimation of regression function with strong mixing errors under fixed design (Submitted)

  • Neumann MH (1996) Spectral density estimation via nonlinear wavelet methods for stationary non-Gaussian time series. J Time Ser Anal 17:601–633

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer Y (1992) Wavelets and operators. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Rio E (1995) The functional law of the iterated logarithm for stationary strongly mixing sequences. Ann Probab 23:1188–1203

    Article  MathSciNet  MATH  Google Scholar 

  • Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric regression. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Stein ML (1999) Interpolation of spatial data. Some theory for Kriging. Springer, New York

    Book  MATH  Google Scholar 

  • Stone CJ (1982) Optimal global rates of convergence for nonparametric regression. Ann Stat 10:1040–1053

    Article  MathSciNet  MATH  Google Scholar 

  • Tran LT (1990) Kernel density estimation on random fields. J Multivar Anal 34:37–53

    Article  MathSciNet  MATH  Google Scholar 

  • Tran LT, Yakowitz S (1993) Nearest neighbor estimators for random fields. J Multivar Anal 44:23–46

    Article  MathSciNet  MATH  Google Scholar 

  • Triebel H (1992) Theory of function spaces II. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  • Vidakovic B (1999) Statistical modeling by wavelets. John Wiley & Sons Inc, New York

    Book  MATH  Google Scholar 

  • Wahba G (1990) Spline models for observational data. In: CBMS-NSF regional conference series in applied mathematics, vol 59, Philadelphia

  • Wand MP, Jones MC (1995) Kernel smoothing. Chapman and Hall Ltd, London

    Book  MATH  Google Scholar 

  • Withers CS (1981) Conditions for linear processes to be strong-mixing. Z Wahrsch Verw Geb 57:477–480

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S, Wong M, Zheng Z (2002) Wavelet threshold estimation of a regression function with random design. J Multivar Anal 80:256–284

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S, Wong M (2003) Wavelet threshold estimation for additive regression models. Ann Stat 31:152–173

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is very grateful to two referees for their careful reading of an earlier version of the manuscript and for their extremely helpful suggestions. This greatly improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linyuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L. Nonparametric regression on random fields with random design using wavelet method. Stat Inference Stoch Process 19, 51–69 (2016). https://doi.org/10.1007/s11203-015-9119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-015-9119-8

Keywords

Mathematics Subject Classification

Navigation