Skip to main content

Advertisement

Log in

Aerobiology and passive restoration of biological soil crusts

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Biological soil crusts (BSCs) exist commonly on soil surfaces in many arid and semiarid areas, and disturbed soil surfaces in more mesic environments. BSCs perform many essential ecological functions. Substantial resources have been invested trying to restore or replace BSCs that have been damaged by anthropogenic disturbances, with various levels of success. The nexus of sciences related to BSC establishment and restoration, and to aerobiology suggests that crusts are established and re-established naturally via commonly occurring ecological processes. Formation of BSCs can be accelerated by implementing traditional or novel land rehabilitation techniques that create near-surface turbulence that facilitates the deposition of airborne BSC organisms. Sexual and asexual propagules of BSC organisms are found naturally in the atmosphere and are transported up to very long distances between continents and hemispheres. Whether restoration of BSCs occurs naturally in this fashion, or through efforts to produce and disseminate artificial inoculants, success is ultimately moderated and governed by the timing and frequency of adequate precipitation relative to the arrival of viable propagules on suitable substrates at appropriate times of year. For the greatest ecological and economic benefit, we suggest that efforts should focus on minimizing the scope and scale of unnecessary anthropogenic disturbance to BSC communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Almuhanna, E. A. (2015). Dustfall associated with dust storms in the Al-Ahsa Oasis of Saudi Arabia. Open Journal of Air Pollution, 4, 65–75.

    Article  Google Scholar 

  • Amo de Paz, G., Cubas, P., Crespo, A., Elix, J. A., & Lumbsch, H. T. (2012). Transoceanic dispersal and subsequent diversification on separate continents shaped diversity of the Xanthoparmelia pulla group (Ascomycota). PLoS ONE, 7, e39683.

    Article  CAS  Google Scholar 

  • Anderson, D. C., Harper, K. T., & Rushforth, S. R. (1982). Recovery of cryptogamic soil crusts from grazing on Utah winter ranges. Journal of Range Management, 35, 355–359.

    Article  Google Scholar 

  • Antoninka, A., Bowker, M. A., Reed, S. C., & Doherty, K. (2016). Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function. Restoration Ecology, 24, 324–335.

    Article  Google Scholar 

  • Bailey, R. H. (1966). Studies on the dispersal of lichen soredia. Journal of the Linnean Society of London, Botany, 59, 479–490.

    Article  Google Scholar 

  • Bannister, J. M., & Blanchon, D. J. (2003). The lichen genus Ramalina Ach. (Ramalinaceae) on the outlying islands of the New Zealand geographic area. Lichenologist, 3, 137–146.

    Article  Google Scholar 

  • Barberán, A., Henley, J., Fierer, N., & Casamayor, E. O. (2014). Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities. Science of the Total Environment, 487, 187–195.

    Article  CAS  Google Scholar 

  • Barberán, A., Ladau, J., Leff, J. W., Pollard, K. S., Menninger, H. L., Dunn, R. R., et al. (2015). Continental-scale distributions of dust-associated bacteria and fungi. Proceedings of the National Academy of Science, 112, 5756–5761.

    Article  CAS  Google Scholar 

  • Belnap, J. (1993). Recovery rates of cryptobiotic crusts: Inoculant use and assessment methods. Great Basin Naturalist, 53, 89–95.

    Google Scholar 

  • Belnap, J., & Eldridge, D. (2001). Disturbance and recovery of biological soil crusts. In J. Belnap & O. L. Lange (Eds.), Biological soil crusts: Structure, function and management (pp. 363–383). Berlin: Springer.

    Chapter  Google Scholar 

  • Belnap, J., & Lange, O. L. (Eds.). (2001). Biological soil crusts: Structure, function and management. Berlin: Springer.

    Google Scholar 

  • Belnap, J., & Warren, S. D. (2002). Patton’s tracks in the Mojave Desert, USA: An ecological legacy. Arid Land Research and Management, 16, 245–258.

    Article  Google Scholar 

  • Benninghoff, W. J. (1991). Aerobiology and its significance in biogeography and ecology. Grana, 30, 9–15.

    Article  Google Scholar 

  • Bowker, M. A. (2007). Biological soil crust rehabilitation in theory and practice: An underexploited opportunity. Restoration Ecology, 15, 13–23.

    Article  Google Scholar 

  • Bowker, M. A., & Antoninka, A. J. (2016). Rapid ex situ culture of N-fixing soil lichens and biocrusts is enhanced by complementarity. Plant and Soil. https://doi.org/10.1007/s11104-016-2929-7.

    Article  Google Scholar 

  • Bu, C., Wu, S., Yang, Y., & Zheng, M. (2014). Identification of factors influencing the restoration of cyanobacteria-dominated biological soil crusts. PLoS ONE, 9, e90049.

    Article  CAS  Google Scholar 

  • Büdel, B., & Wessels, D. C. J. (1986). Parmelia hueana Gyeln., a vagrant lichen from the Namib Desert, SWA/Namibia. I Anatomical and reproductive adaptation. Dinteria, 12, 3–16.

    Google Scholar 

  • Buttars, S. M., St. Clair, L. L., Johansen, J. R., Sray, J. C., Payne, M. C., Webb, B. L., et al. (1998). Pelletized cyanobacterial soil amendment: Laboratory testing for survival, escapability, and nitrogen fixation. Arid Soil Research and Rehabilitation, 12, 165–178.

    Google Scholar 

  • Callison, J., Brotherson, J. D., & Bowns, J. E. (1985). The effects of fire on the blackbrush [Coleogyne ramosissima] community of southwestern Utah. Journal of Range Management, 38, 535–538.

    Article  Google Scholar 

  • Carson, J. L., & Brown, R. M. (1976). The correlation of soil algae, airborne algae, and fern spores with meteorological conditions on the Island of Hawaii. Pacific Science, 30, 197–205.

    Google Scholar 

  • Castellani, F. (2005). Historical monuments: The film. Nature, 43, 100–101.

    Article  CAS  Google Scholar 

  • Castenholz, R. W., & Garcia-Pichel, F. (2012). Cyanobacterial responses to UV radiation. In B. A. Whitton (Ed.), Ecology of Cyanobacteria II (pp. 481–499). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Chen, R., Zhang, Y., Li, Y., Wei, W., Zhang, J., & Wu, Nan. (2009). The variation of morphological features and mineralogical components of biological soil crusts in the Gurbantunggut Desert of Northwestern China. Environmental Geology, 57(5), 1135–1143.

    Article  Google Scholar 

  • Chiquoine, L. P., Arbella, S. R., & Bowker, M. A. (2016). Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem. Ecological Applications, 26, 1260–1272.

    Article  Google Scholar 

  • Cole, D. N. (1990). Trampling disturbance and recovery of cryptogamic soil crusts in Grand Canyon National Park. The Great Basin Naturalist, 50, 321–325.

    Google Scholar 

  • Cole, C., Stark, L. R., Bonine, M. L., & McLetchie, D. N. (2010). Transplant survivorship of bryophyte soil crusts in the Mojave Desert. Restoration Ecology, 18, 198–205.

    Article  Google Scholar 

  • Danin, A. (1999). Desert rocks as plant refugia in the Near East. The Botanical Review, 65(2), 93–170.

    Article  Google Scholar 

  • Darwin, C. (1846). An account of the fine dust which often falls on vessels in the Atlantic Ocean. Quarterly Journal of the Geological Society of London, 2, 26–30.

    Article  Google Scholar 

  • Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., et al. (2012). Primary biological aerosol particles in the atmosphere: A review. Tellus, 64, 11598.

    Google Scholar 

  • Doherty, O. M., Riemer, N., & Hameed, S. (2008). Saharan mineral dust transport into the Caribbean: Observed atmospheric controls and trends. Journal of Geophysical Research, 113, D07211.

    Article  CAS  Google Scholar 

  • Dojani, S., Büdel, S., Deutschewitz, K., & Weber, B. (2011). Rapid succession of biological soil crusts after experimental disturbance in the Succulent Karoo, South Africa. Applied Soil Ecology, 48, 263–269.

    Article  Google Scholar 

  • Dor, I., & Danin, D. (2001). Life strategies of Microcoleus vaginatus: A crust forming cyanophyte on desert soils. Nova Hedwigia, 123, 317–339.

    Google Scholar 

  • Dubey, S., Dixit, A., & Boswal, M. V. (2010). Seasonal distribution of aero algal allergens in the wetlands of Kanpur. The Bioscan, 3, 673–680.

    Google Scholar 

  • Dümig, A., Veste, M., Hagedorn, F., Fischer, T., Lange, P., Spröte, R., et al. (2013). Biological soil crusts on initial soils: Organic dynamics and chemistry under temperate climatic conditions. Biogeosciences, 10, 851–894.

    Article  Google Scholar 

  • Durrell, L. W. (1962). Algae of death valley. Transactions of the American Microscopical Society, 81, 267–273.

    Article  Google Scholar 

  • Ekström, M., McTainsh, G. H., & Chappell, A. (2004). Australian dust storms: Temporal trends and relationships with synoptic pressure distributions (1960–00). International Journal of Climatology, 24, 1581–1599.

    Article  Google Scholar 

  • Eldridge, D. J., & Ferris, J. M. (1999). Recovery of populations of the soil lichen Psora crenata after disturbance in arid South Australia. The Rangeland Journal, 21, 194–198.

    Article  Google Scholar 

  • Favero-Longo, S. E., Sandrone, S., Matteucci, E., Appolonia, L., & Piervittori, R. (2014). Spores of lichen-forming fungi in the mycoaerosol and their relationships with climate factors. Science of the Total Environment, 466–467, 26–33.

    Article  CAS  Google Scholar 

  • Fernández-Mendoza, F., & Pritzen, C. (2013). Pleistocene expansion of the bipolar lichen Cetraria aculeata into Southern hemisphere. Molecular Ecology, 22, 1961–1983.

    Article  Google Scholar 

  • Galloway, D. J., & Aptroot, A. (1995). Bipolar lichens: A review. Cryptogamic Botany, 5, 184–191.

    Google Scholar 

  • Gębarowska, E., Pusz, W., Kucińska, J., & Wita, W. (2017). Comparative analysis of airborne bacteria and fungi in two salt mines in Poland. Aerobiologia. https://doi.org/10.1007/s10453-017-9502-6.

    Article  Google Scholar 

  • Genitsaris, S., Kormas, K. A., & Moustaka-Gouni, M. (2011). Airborne algae and cyanobacteria: Occurrence and related health effects. Frontiers in Bioscience, 3, 772–787.

    Google Scholar 

  • Golan, J. J., & Pringle, A. (2017). Long-distance dispersal of fungi. Microbiology Spectrum. https://doi.org/10.1128/microbiolspec.funk-0047-2016.

    Article  Google Scholar 

  • Gosselin, M. I., Rathnayake, C. M., Crawford, I., Pöhlker, C., Fröhlich-Nowolsky, J., Schmer, B., et al. (2016). Fluoresent bioaerosol particle, molecular tracer, and fungal spore concentrate.ons during dry and rainy periods in a semiarid forest. Atmospheric Chemistry and Physics, 16, 15165–15184.

    Article  CAS  Google Scholar 

  • Green, T. G., & Broady, P. A. (2001). Biological soil crusts of Antarctica. In J. Belnap & O. L. Lange (Eds.), Biological soil crusts: Structure, function, and management (pp. 133–139). Berlin: Springer.

    Chapter  Google Scholar 

  • Griffin, D. W., Kellogg, C. A., Garrison, V. H., & Shinn, E. A. (2002). The global transport of dust: An intercontinental river of dust, microorganisms and toxic chemicals flows through the Earth’s atmosphere. American Scientist, 90, 228–235.

    Article  Google Scholar 

  • Guo, Y., Zhao, H., Zuo, X., Drake, S., & Zhao, X. (2008). Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China. Environmental Geology, 54, 653–662.

    Article  CAS  Google Scholar 

  • Hallar, A. G., Chirokova, G., McCubbin, I., Painter, T. H., Wydinmyer, C., & Dodson, C. (2011). Atmospheric bioaerosols transported by dust storms in the western United States. Geophysical Research Letters, 38, L17801.

    Article  CAS  Google Scholar 

  • Harding, T., Jungblut, A. D., Lovejoy, C., & Vincent, W. F. (2011). Microbes in high arctic snow and implications for the cold biosphere. Applied and Environmental Microbiology, 77, 3234–3243.

    Article  CAS  Google Scholar 

  • Harmata, K., & Olech, M. (1991). Transect for aerobiological studies from Antarctica to Poland. Grana, 30, 458–463.

    Article  Google Scholar 

  • Heinken, T. (1999). Dispersal patterns of terricolous lichens by thallus fragments. The Lichenologist, 31, 603–612.

    Article  Google Scholar 

  • Herbold, C. W., Lee, C. K., McDonald, I. R., & Cary, S. C. (2014). Evidence of global-scale aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica. Nature Communications, 5, 3875.

    Article  CAS  Google Scholar 

  • Holzinger, A., & Karsten, U. (2013) Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological, and molecular mechanisms. Frontiers in Plant Science, 4, article 327

  • Horton, W., Miura, H., Onishchenko, O., Couede, L., Arnas, C., Escarguel, A., et al. (2016). Dust devil dynamics. Journal of Geophysical Research: Atmospheres, 121, 7197–7214. https://doi.org/10.1002/2016JD024832.

    Article  Google Scholar 

  • Howard, G. L., & Warren, S. D. (1998). The incorporation of cyanobacteria into starch pellets and determination of escapability rates for use in land rehabilitation. US Army Construction Engineering Research Laboratory Special Report 98/56

  • Huang, J., & McElroy, M. B. (2014). Contributions of the Hadley and Ferrel circulation to the energetics of the atmosphere over the past 32 years. Journal of Climate, 17, 2656–2666.

    Article  Google Scholar 

  • Hugonnot, V., & Celle, J. (2012). Asexual reproduction by leaf fragmentation in Mnium stellare Hedw. Journal of Bryology, 39, 67–70.

    Article  Google Scholar 

  • Jeffries, D. L., & Klopatek, J. M. (1987). Effects of grazing on the vegetation of the blackbrush association. Journal of Range Management, 40, 390–392.

    Article  Google Scholar 

  • Johansen, J. R. (2001). Impacts of fire on biological soil crusts. In J. Belnap & O. L. Lange (Eds.), Biological soil crusts: Structure, function, and management (pp. 386–397). Berlin: Springer.

    Google Scholar 

  • Johansson, V., Lönnell, N., Rannik, Ü., Sundberg, S., & Hylander, K. (2015). Air humidity thresholds trigger moss spore release to extend dispersal in space and time. Functional Ecology, 30, 1196–1204.

    Article  Google Scholar 

  • Jungblut, A. D., Lovejoy, C., & Vincent, W. F. (2010). Global distribution of cyanobacterial ecotypes in the cold biospherere. The ISME Journal, 4, 191–202.

    Article  CAS  Google Scholar 

  • Jungblut, A. D., Vincent, W. F., & Lovejoy, C. (2012). Eukaryotes in Arctic and Antarctic cyanobacterial mats. FEMS Microbial Ecology, 82, 416–428.

    Article  CAS  Google Scholar 

  • Kade, A., & Warren, S. D. (2002). Soil and plant recovery after historic military disturbances in the Sonoran Desert, USA. Arid Land Research and Management, 16, 231–243.

    Article  Google Scholar 

  • Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology & Evolution, 21, 638–644.

    Article  Google Scholar 

  • Kharkongor, D., & Ramanujam, P. (2014). Diversity and species composition of subaerial algal communities in forested areas of Meghalaya, India. International Journal of Biodiversity, 2014, 456202.

    Article  Google Scholar 

  • Kjellsson, J., & Döös, K. (2012). Lagrangian decomposition of the Hadley and Ferrel cells. Geophysical Research Letters, 39, L15807.

    Article  Google Scholar 

  • Kok, J. F., Parteli, E. J. R., Michaels, T. I., & Karam, D. B. (2012). The physics of wind-blown sand and dust. Reports on Progress in Physics, 75, 106901.

    Article  Google Scholar 

  • Kubečková, K., Johansen, J. R., Warren, S. D., & Sparks, R. (2003). Development of immobilized cyanobacterial amendments for reclamation of microbiotic soil crusts. Algological Studies, 109, 341–362.

    Article  Google Scholar 

  • Kvíderová, J. (2012). Research on cryosestic communities in Svalbard: The snow algae of temporary snowfields in Petuniabukta, Central Svalbard. Czech Polar Reports, 2, 8–19.

    Article  Google Scholar 

  • Laaka-Lindberg, S., Korpelainen, H., & Pohjamo, M. (2003). Dispersal of asexual propagules in bryophytes. The Journal of Hattori Botanical Laboratories, 93, 319–330.

    Google Scholar 

  • Lalley, J. S., & Viles, H. A. (2008). Recovery of lichen-dominated soil crusts in a hyperarid desert. Biodiversity and Conservation, 17, 1–20.

    Article  Google Scholar 

  • Lamenti, G., Tiano, P., & Tomaselli, L. (2000). Biodeterioration of ornamental marble statues in Boboli Gardens (Florence, Italy). Journal of Applied Phycology, 12, 427–433.

    Article  Google Scholar 

  • Leavitt, S. D., & Lumbsch, H. T. (2016). Ecological biogeography of lichen-forming fungi. In I. S. Druzhinina & C. P. Kubicek (Eds.), Environmental and microbial relationships (pp. 15–37). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Lee, T. F., & Eggleston, P. M. (1989). Airborne algae and cyanobacteria. Grana, 28, 63–66.

    Article  Google Scholar 

  • Lee, H. N., Igarashi, Y., Chiba, M., Aoyama, M., Hirose, K., & Tanaka, T. (2006). Global model simulation of the transport of Asian and Saharan dust: Total deposition of dust mass in Japan. Water, Air, and Soil pollution, 169, 137–166.

    Article  CAS  Google Scholar 

  • Lewandowska, A. U., Śliwińska-Wilczewska, S., & Woźniczka, D. (2017). Identification of cyanobacteria and microalgae of various sizes in the air over the Southern Baltic Sea. Marine Pollution Bulletin, 125, 30–38.

    Article  CAS  Google Scholar 

  • Lewis, J. M. (2003). Ooishi’s observation viewed in the context of jet stream discovery. Bulletin of the American Meteorological Society, 84(3), 357–369. https://doi.org/10.1175/BAMS-84-3-357369.

    Article  Google Scholar 

  • Li, F., Ginoux, P., & Ramaswamy, V. (2008). Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: Contribution of major sources. Journal of Geophysical Research, 113, D10207.

    Article  Google Scholar 

  • Li, Y. F., Li, Z. W., Jia, Y. H., & Zhang, K. (2016). Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau. Earth and Environmental Science, 39, 012070.

    Google Scholar 

  • Li, X. R., Xiao, H. L., He, M. Z., & Zhang, J. G. (2006). Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions. Ecological Engineering, 28, 149–157.

    Article  Google Scholar 

  • Li, X.-R., Zhao, H.-Y., Wang, X.-P., Zhu, Y.-G., & O’Conner, P. J. (2003). The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in the Tengger Desert, Northern China. Plant and Soil, 251, 237–245.

    Article  CAS  Google Scholar 

  • Lönnell, N., Hylander, K., Jonsson, B. G., & Sundberg, S. (2012). The fate of the missing spores—Patterns of realized dispersal beyond the closest vicinity of a sporulating moss. PLoS ONE, 7(7), e41987.

    Article  CAS  Google Scholar 

  • Macedo, M. F., Miller, A. Z., Dionísio, A., & Saiz-Jimenez, C. (2009). Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: An overview. Microbiology, 155, 3476–3490.

    Article  CAS  Google Scholar 

  • Maestre, F. T., Martín, N., Díez, B., López-Poma, R., Santos, F., Luque, I., et al. (2006). Watering, fertilization, and slurry inoculation promote recovery of biological crust function in degraded soils. Microbial Ecology, 52, 365–377.

    Article  Google Scholar 

  • Marshall, W. A. (1997). Seasonality in Antarctic airborne fungal spores. Applied and Environmental Microbiology, 63, 220–2245.

    Google Scholar 

  • Marshall, W. A., & Chalmers, M. O. (1997). Airborne dispersal of antarctic terrestrial algae and cyanobacteria. Ecography, 20, 585–594.

    Article  Google Scholar 

  • Marshall, W. A., & Convey, P. (1997). Dispersal of moss propagules on Signy Island, maritime Antarctic. Polar Biology, 18, 376–383.

    Article  Google Scholar 

  • McGorum, B. C., Pirie, R. S., Glendinning, L., McLachlan, G., Metcalf, J. S., Banack, S. A., et al. (2015). Grazing livestock are exposed to terrestrial cyanobacteria. Veterinary Research, 46, 16. https://doi.org/10.1186/s13567-015-0143-x.

    Article  CAS  Google Scholar 

  • McLeman, R. A., Dupre, J., Berrang Ford, L., Ford, J., Gajewski, K., & Marchildon, G. (2014). What we learned from the Dust Bowl: Lessons in science, policy, and adaptation. Population and Environment, 35, 417–440.

    Article  Google Scholar 

  • McTainsh, G. H., Lynch, A. W., & Tews, E. K. (1998). Climatic controls upon dust storm occurrence in eastern Australia. Journal of Arid Environments, 39, 457–466.

    Article  Google Scholar 

  • Meier, F. C., & Lindbergh, C. A. (1935). Collecting microorganisms from the Arctic atmosphere: With field notes and material. The Scientific Monthly, 40, 5–20.

    Google Scholar 

  • Metzger, S. M., Balme, M. R., Towner, M. C., Bos, B. J., Ringrose, T. J., & Patel, M. R. (2011). In situ measurements of particle load and transport in dust devils. Icarus, 214, 766–772.

    Article  Google Scholar 

  • Miller, N. G., & McDaniel, S. F. (2004). Bryophyte disperal inferred from colonization of an introduced substrate on Whiteface Mountain, New York. American Journal of Botany, 91, 1173–1182.

    Article  Google Scholar 

  • Muñoz, J., Felicísimo, Á. M., Cabezas, F., Burgaz, A. R., & Martínez, I. (2004). Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science, 304, 1144–1147.

    Article  CAS  Google Scholar 

  • Nagy, M. L., Pérez, A., & Garcia-Pichel, F. (2005). The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiology Ecology, 54, 233–245.

    Article  CAS  Google Scholar 

  • Nickling, W. G. (1978). Eolian sediment transport during dust storms: Slims River Valley, Yukon Territory. Canadian Journal of Earth Sciences, 15, 1069–1084.

    Article  Google Scholar 

  • Orlovsky, L., Orlovsky, N., & Durdyev, A. (2005). Dust storms in Turkmenistan. Journal of Arid Environments, 60, 83–97.

    Article  Google Scholar 

  • Park, C. H., Li, X.-R., Jia, R. L., & Hur, J. S. (2017). Combined application of cyanobacteria with soil fixing chemicals for rapid induction of biological soil crust formation. Arid Land Research and Management, 31, 81–93.

    Article  CAS  Google Scholar 

  • Patzelt, D. J., Hodac, L., Friedl, T., Pietrasiak, N., & Johansen, J. R. (2014). Biodiversity of soil cyanobacteria in the hyper-arid Atacama Desert, Chile. Journal of Phycology, 50, 698–710.

    Article  CAS  Google Scholar 

  • Pearce, D. A., Bridge, P. D., Hughes, K. A., Sattler, B., Psenner, R., & Russell, N. J. (2009). Microorganisms in the atmosphere over Antarctica. FEMS Microbiology Ecology, 69, 143–157.

    Article  CAS  Google Scholar 

  • Piñeiro, R., Popp, M., Hassel, K., Listl, D., Westergaard, K. B., Flatberg, K. I., et al. (2012). Circumarctic dispersal and long-distance colonization of South America: The moss genus Cinclidium. Journal of Biogeography, 39, 2041–2051.

    Article  Google Scholar 

  • Pohjamo, M., Laaka-Lindberg, S., Ovaskainen, O., & Korpelainen, H. (2006). Dispersal potential of spores and asexual propagules in the epixylic hepatic Anastrophyllum hellerianum. Evolutionary Ecology, 20, 415–430.

    Article  Google Scholar 

  • Pointing, S. B., & Belnap, J. (2014). Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales. Biodiversity Conservation, 23, 1659–1667.

    Article  Google Scholar 

  • Potts, M. (1994). Desiccation tolerance of prokaryotes. Microbiological Reviews, 58, 755–805.

    CAS  Google Scholar 

  • Prospero, J. M. (1999). Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proceedings of the National Academy of Science, 96, 3396–3403.

    Article  CAS  Google Scholar 

  • Prospero, J. M., & Lamb, P. J. (2003). African droughts and dust transport to the Caribbean: Climate change implications. Science, 302, 1024–1027.

    Article  CAS  Google Scholar 

  • Prospero, J. M., & Mayor-Bracero, O. L. (2013). Understanding the transport and impact of African dust on the Caribbean Basin. Bulletin of the American Meteorological Society, 94(9), 1329–1337. https://doi.org/10.1175/BAMS-D-12-00142.1.

    Article  Google Scholar 

  • Qian, W., Quan, L., & Shi, S. (2002). Variations of the dust storms in China and its climatic control. Journal of Climate, 15, 1216–1229.

    Article  Google Scholar 

  • Qiu, G. Y., Lee, I.-B., Shimizu, H., Gao, Y., & Ding, G. (2004). Principles of sand dune fixation with straw checkerboard technology and its effect on the environment. Journal of Arid Environments, 56, 449–464.

    Article  Google Scholar 

  • Rahav, E., Paytan, A., Chien, C.-T., Ovadia, G., Katz, T., & Herut, B. (2016). The impact of atmospheric dry deposition associated microbes on southeastern Mediterranean Sea surface water following an intense dust storm. Frontiers in Marine Science, 3, 127. https://doi.org/10.3389/fmars.2016.00127.

    Article  Google Scholar 

  • Rajeev, L., Nunes da Rocha, U., Klitgord, N., Luning, E. G., Fortney, J., Axen, S. D., et al. (2013). Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. International Society for Microbial Ecology Journal, 7, 2178–2191.

    CAS  Google Scholar 

  • Rangarajan, C., & Eapen, C. D. (2012). Estimates of interhemispheric transport of radioactive debris by the east African low level jet stream. Journal of Geophysical Research: Oceans, 1978–2012(86), 12153–12154.

    Google Scholar 

  • Read, C. F., Duncan, D. H., Vesk, P. A., & Elith, J. (2011). Surprisingly fast recovery of biological soil crusts following livestock removal in southern Australia. Journal of Vegetation Science, 42(5), 905–916. https://doi.org/10.1111/j.1654-1103.2011.01296.x.

    Article  Google Scholar 

  • Rosselli, R., Fiamma, M., Deligios, M., Pintus, G., Pellizzaro, G., Canu, A., et al. (2015). Microbial immigration across the Mediterranean via airborne dust. Scientific Reports, 5, 16306.

    Article  CAS  Google Scholar 

  • Rousseau, D.-D., Antoine, P., Kunesch, S., Hatté, C., Rossignol, J., Packman, S., et al. (2007). Evidence of cyclic dust deposition in the US Great Plains during the last deglaciation from the high-resolution analysis of the Peoria Loess in the Eustis sequence (Nebraska, USA). Earth and Planetary Science Letters, 262, 159–174.

    Article  CAS  Google Scholar 

  • Sahu, N., & Tangutur, A. D. (2015). Airborne algae: Overview of the current status and its implications on the environment. Aerobiology, 31, 89–97.

    Article  Google Scholar 

  • Samad, L. K., & Adhikary, S. P. (2008). Diversity of micro-algae and cyanobacteria on building facades and monuments in India. Algae, 23(2), 91–114.

    Article  Google Scholar 

  • Schlichting, H. E. (1969). The importance of airborne algae and protozoa. Journal of the Air Pollution Control Association, 19, 946–951.

    Article  Google Scholar 

  • Schwiesow, R. L., & Cupp, R. E. (1976). Remote Doppler velocity measurements of atmospheric dust devil vortices. Applied Optics, 15, 1–2.

    Article  CAS  Google Scholar 

  • Sethi, S. K., Samad, L. K., & Adhikary, S. P. (2012). Cyanobacteria and micro-algae in biological crusts on soil and sub-aerial habitats of eastern and north eastern region of India. Phycos, 42, 1–9.

    Google Scholar 

  • Sharma, N. K., Rai, A. K., & Singh, S. (2006a). Meteorological factors affecting the diversity of airborne algae in an urban atmosphere. Ecography, 29, 766–772.

    Article  Google Scholar 

  • Sharma, N. K., Rai, A. K., Singh, S., & Brown, R. M. (2007). Airborne algae: Their present status and relevance. Journal of Phycology, 43, 615–627.

    Article  Google Scholar 

  • Sharma, N. K., Singh, S., & Rai, A. K. (2006b). Diversity and seasonal variation of viable algal particles in the atmosphere of a subtropical city in India. Environmental Research, 102, 252–259.

    Article  CAS  Google Scholar 

  • Sissakian, V. K., Al-Asari, N., & Knutsson, S. (2013). Sand and dust storm events in Iraq. Natural Science, 5, 1084–1094.

    Article  Google Scholar 

  • Søchting, U., & Olech, M. (1995). The lichen genus Caloplaca in polar regions. Lichenologist, 27(6), 463–471.

    Article  Google Scholar 

  • Spröte, R., Fischer, T., Veste, M., Raab, T., Wiehe, W., Lange, P., et al. (2010). Biological topsoil crusts at early successional stages on Quaternary substrates dumped by mining in Brandenburg, NE Germany. Géomorphologie, 16(4), 359–370.

    Article  Google Scholar 

  • St. Clair, L. L., Johansen, J. R., & Webb, B. L. (1986). Rapid stabilization of fire-disturbed sites using a soil crust slurry: Inoculation studies. Reclamation and Rehabilitation Research, 4, 261–269.

    Google Scholar 

  • Stark, L. R. (2003). Mosses in the desert. Fremontia, 31, 26–33.

    Google Scholar 

  • Swarf, P. K., Oehlert, A. M., Mackenzie, G. J., Eberli, G. P., & Reijmer, J. J. G. (2014). The fertilization of the Bahamas by Saharan dust: A trigger for carbonate precipitation? Geology, 42, 671–674.

    Article  CAS  Google Scholar 

  • Takeuchi, N. (2013). Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range). Environmental Research Letters, 8(3), 035002.

    Article  Google Scholar 

  • Tesson, S. V., Skjøth, C. A., Šanti-Temkiv, T., & Löndahl, J. (2016). Airborne microalgae: Insights, opportunities, and challenges. Applied and Environmental Microbiology, 82, 1978–1991.

    Article  CAS  Google Scholar 

  • Tomaselli, L., Lamenti, G., Bosco, M., & Tiano, P. (2000). Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. International Biodeterioration and Biodegradation, 46, 251–258.

    Article  Google Scholar 

  • Tormo, R., Recio, D., Silva, I., & Muñoz, A. F. (2001). A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in south-west Spain. European Journal of Phycology, 36, 385–390.

    Article  Google Scholar 

  • Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M., et al. (2009). Asian dust transported one full circuit around the globe. Nature Geoscience, 2, 557–560.

    Article  CAS  Google Scholar 

  • Verma, P. K., Kumar, N., Kaushik, P. K., & Yadav, A. (2014). Bryophyte invasion on famous archaeological site of Ahom Dynasty ‘Talatal Ghar’ of Sibsagar, Assam (India). Proceedings of the National Academy of Sciences, India Section B, Biological Sciences, 84(1), 71–74.

    Article  Google Scholar 

  • Vonnahme, T. R., Devetter, M., Źárský, J. D., Šabacká, M., & Elster, J. (2016). Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard. Biogeosciences, 13, 659–674.

    Article  CAS  Google Scholar 

  • Wang, X., Dong, Z., Zhang, J., & Liu, L. (2004). Modern dust storms in China: An overview. Journal of Arid Environments, 58, 559–574.

    Article  Google Scholar 

  • Warren, S. D. (1995). Ecological role of microphytic soil crusts in arid environments. In D. Allsopp, R. R. Caldwell, & D. L. Hawksworth (Eds.), Microbial diversity and function (pp. 199–209). Wellingford: CAB International.

    Google Scholar 

  • Warren, S. D. (2014). Role of biological soil crusts in desert hydrology and geomorphology: Implications for military training operations. Reviews in Engineering Geology, 22, 177–186.

    Article  Google Scholar 

  • Warren, S. D., & Eldridge, D. J. (2001). Biological soil crusts and livestock in arid ecosystems: Are they compatible? In J. Belnap & O. L. Lange (Eds.), Biological soil crusts: Structure, function and management (pp. 401–415). Berlin: Springer.

    Chapter  Google Scholar 

  • Webb, R. H., Steiger, J. W., & Newman, E. B. (1988) The response of vegetation to disturbance in Death Valley National Monument, California. US Geological Survey Bulletin 1793

  • Weber, B., Bowker, M., Zhang, Y., & Belnap, J. (2016a). Natural recovery of biological soil crusts after disturbance. In B. Weber, B. Büdel, & J. Belnap (Eds.), Biological soil crusts: An organizing principle in drylands (pp. 479–498). Cham: Springer.

    Chapter  Google Scholar 

  • Weber, B., Büdel, B., & Belnap, J. (Eds.). (2016b). Biological soil crusts: An organizing principal in drylands. Cham: Springer.

    Google Scholar 

  • Wilshire, H. G. (1983). The impact of vehicles on desert stabilizers. In R. H. Webb & H. G. Wilshire (Eds.), Environmental effects of off-road vehicles (pp. 31–50). New York: Springer.

    Chapter  Google Scholar 

  • Womack, A. M., Bohannan, B. J. M., & Green, J. L. (2010). Biodiversity and biogeography of the atmosphere. Transactions of the Royal Society, 365, 3645–3653.

    Article  Google Scholar 

  • Xu, S., Yin, C., He, M., & Wang, Y. (2008). A technology for rapid reconstruction of moss-dominated soil crusts. Environmental Engineering Science, 25, 1129–1137.

    Article  CAS  Google Scholar 

  • Zhang, J., Zhang, C., Ma, X., Zhou, N., Wang, H., & Rissler, P. S. (2014). Dust fall and biological soil crust distribution as indicators of the aeolian environment in China’s Shapatou railway protective system. CATENA, 114, 107–118.

    Article  Google Scholar 

  • Zhang, T.-H., Zhao, H.-L., Li, S.-G., Li, L.-R., Shirato, Y., & Ohkuro, T. (2004). A comparison of different measures for stabilizing moving sand dunes in the Horqin Sandy Land of Inner Mongolia, China. Journal of Arid Environments, 58, 203–214.

    Article  Google Scholar 

  • Zhao, Y., Bowker, M. A., Zhang, Y., & Zaady, E. (2016). Enhanced recovery of biological soil crusts after disturbance. In B. Weber, B. Büdel, & J. Belnap (Eds.), Biological soil crusts: An organizing principle in drylands (pp. 499–523). Cham: Springer.

    Chapter  Google Scholar 

Download references

Authors’ contribution

Conceived and originally written by Warren. Edited and additional material by St. Clair and Leavitt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Warren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warren, S.D., St. Clair, L.L. & Leavitt, S.D. Aerobiology and passive restoration of biological soil crusts. Aerobiologia 35, 45–56 (2019). https://doi.org/10.1007/s10453-018-9539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-018-9539-1

Keywords

Navigation