Skip to main content

Advertisement

Log in

Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

This review considers the regional scale of impacts arising from disturbance to desert soil ecosystems. Deserts occupy over one-third of the Earth’s terrestrial surface, and biological soil covers are critical to stabilization of desert soils. Disturbance to these can contribute to massive destabilization and mobilization of dust. This results in dust storms that are transported across inter-continental distances where they have profound negative impacts. Dust deposition at high altitudes causes radiative forcing of snowpack that leads directly to altered hydrological regimes and changes to freshwater biogeochemistry. In marine environments dust deposition impacts phytoplankton diazotrophy, and causes coral reef senescence. Increasingly dust is also recognized as a threat to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abed RMM, Ramette A, Hübner V, De Deckker P, de Beer D (2012) Microbial diversity of eolian dust sources from saline lake sediments and biological soil crusts in arid Southern Australia. FEMS Microbiol Ecol 80:294–304

    Article  CAS  PubMed  Google Scholar 

  • Anon. (2005) Millenium Ecosystem Assessment. World Resources Institute, Washington, DC

  • Bahl J et al (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163. doi:10.1038/ncomms1167

    Article  PubMed Central  PubMed  Google Scholar 

  • Belnap J (2003) The world at your feet: desert biological soil crusts. Front Ecol Environ 1:181–189

    Article  Google Scholar 

  • Belnap J, Eldridge D (2003) Disturbance and recovery of biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 363–384

    Chapter  Google Scholar 

  • Belnap J, Gillette DA (1997) Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern Utah. Land Degr Devel 8:355–362

    Article  Google Scholar 

  • Belnap J, Büdel B, Lange OL (2003) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 3–30

    Chapter  Google Scholar 

  • Bener A, Abdulrazzaq YM, Al-Mutawwa J, Debuse P (1996) Genetic and environmental factors associated with asthma. Hum Biol 68:405–414

    CAS  PubMed  Google Scholar 

  • Bowker MA, Mau RL, Maestre FT, Escolar C, Castillo-Monroy AP (2011) Functional profiles reveal unique ecological roles of various biological soil crust organisms. Funct Ecol 25:787–795

    Article  Google Scholar 

  • Bowker MA, Maestre FT, Mau RL (2013) Diversity and patch-size distributions of biological soil crusts regulate dryland ecosystem multifunctionality. Ecosystems 16:923–933

    Article  CAS  Google Scholar 

  • Brodie EL, DeSantis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL (2007) Urban aerosols harbor diverse and dynamic bacterial populations. PNAS 104:299–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bullard JE et al. (2011) Preferential dust sources: a geomorphological classification designed for use in global dust-cycle models. J Geophys Res 116(F4) doi:10.1029/201JF002061

  • Chan Y et al (2012) Hypolithic microbial communities: between a rock and a hard place. Environ Microbiol 14:2272–2282

    Article  PubMed  Google Scholar 

  • Chappell A et al (2013) Soil organic carbon dust emission: an omitted global source of atmospheric CO2. Glob Change Biol 19:3238–3244

    Article  Google Scholar 

  • Collyer FX, Barnes BG, Churchman GJ, Clarkson TS, Steiner JT (1984) A trans-Tasman dust transport event. Weather Clim 4:42–46

    Google Scholar 

  • De Deckker P et al. (2008) Geochemical and microbiological fingerprinting of airborne dust that fell in Canberra, Australia, in October 2002. Geochem Geophys Geosys G3, v9(12). doi:10.1029/2008GC002091

  • Delgado-Baquerizo M, Maestre FT, Gallardo A (2012) Biological soil crusts increase the resistance of soil nitrogen dynamics to changes in temperatures in a semi-arid ecosystem. Plant Soil 366:35–47

    Article  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Rodríguez JGP, Gallardo A (2013) Biological soil crusts promote N accumulation in response to dew events in dryland soils. Soil Biol Biochem 62:22–27

    Article  CAS  Google Scholar 

  • Derimian Y et al. (2006) Dust and pollution aerosols over the Negev desert, Israel: properties, transport, and radiative effect. J Geophys Res D05205. doi:10.1029/2005JD006549

  • Elbert W et al (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Article  CAS  Google Scholar 

  • Favet J et al (2013) Microbial hitchhikers on intercontinental dust: catching a lift in Chad. ISME J 7:850–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Field JP et al (2009) The ecology of dust. Front Ecol Environ 8:423–430

    Article  Google Scholar 

  • Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka RM (2013) Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–1577

    Article  CAS  PubMed  Google Scholar 

  • Garrison VH (2003) African and Asian dust: from desert soils to coral reefs. Bioscience 53:469

    Article  Google Scholar 

  • Giannadaki D, Pozzer A, Lelieveld J (2013) Modeled global effects of airborne desert dust on air quality and premature mortality. Atmos Chem Phys Disc 13:24023–24050

    Article  Google Scholar 

  • Gilbert N (2011) Science enters desert debate. Nature 477:262

    Article  CAS  PubMed  Google Scholar 

  • Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20:459–477

    Article  PubMed Central  PubMed  Google Scholar 

  • Griffin DW, Westphal DL, Gray MA (2006) Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, Leg 209. Aerobiologia 22:221–226

    Article  Google Scholar 

  • Gyan K et al (2005) African dust clouds are associated with increased paediatric asthma accident and emergency admissions on the Caribbean island of Trinidad. Int J Biometeorol 49:371–376

    Article  CAS  PubMed  Google Scholar 

  • Harper KT, Belnap J (2001) The influence of biological soil crusts on mineral uptake by associated vascular plants. J Arid Environ 47:347–357

    Article  Google Scholar 

  • Harper KT, Pendleton RL (1993) Cyanobacteria and cyanolichens: can they enhance availability of essential minerals for higher plants? Great Basin Nat 53:59–72

    Google Scholar 

  • Hervas A, Camarero L, Reche I, Cassamayor F (2009) Viability and potential for immigration of airborne bacteria from African that reach high mountain lakes in Europe. Environ Microbiol 11:1612–1623

    Article  PubMed  Google Scholar 

  • Holmes CW, Miller R (2004) Atmospherically transported elements and deposition in the southeastern United States: local or transoceanic? Appl Geochem 19:1189–1200

    Article  CAS  Google Scholar 

  • Jeon EM et al (2011) Impact of Asian dust events on airborne bacterial community assessed by molecular analyses. Atmos Environ 45:4313–4321

    Article  CAS  Google Scholar 

  • Jickells TD et al (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71

    Article  CAS  PubMed  Google Scholar 

  • Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644

    Article  PubMed  Google Scholar 

  • Kellogg CA et al (2004) Characterization of aerosolized bacteria and fungi from desert dust events in West Africa. Aerobiologia 20:99–110

    Article  Google Scholar 

  • Lange OL (1990) Twenty-three years of growth measurements on the crustose lichen Caloplaca aurantia in the central Negev desert. Israel J Bot 39:883–894

    Google Scholar 

  • Lawrence CR, Neff JC (2009) The contemporary physical and chemical flux of aeolian dust: a synthesis of direct measurements of dust deposition. Chem Geol 267:46–63

    Article  CAS  Google Scholar 

  • Lim N (2011) Microbiological and meteorological analysis of two Australian dust storms in April 2009. Sci Total Environ 412–413:223–231

    Article  PubMed  Google Scholar 

  • Mackie DS et al. (2008) Biogeochemistry of iron in Australian dust: from eolian uplift to marine uptake. Geochem Geophys Geosys 9(3) doi:10.1029/2007GC001813

  • Maestre FT et al (2012) Plant species richness and ecosystem multifunctionality in global drylands. Science 335:214–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maestre FT et al (2013) Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Change Biol 19:3835–3847

    Article  Google Scholar 

  • Mahowald NM (2003) Ephemeral lakes and desert dust sources. Geophys Res Lett. doi:10.1029/2002GL016041

    Google Scholar 

  • Marx SK, McGowan HA (2005) Dust transportation and deposition in a superhumid environment, West Coast, South Island, New Zealand. Catena 59:147–171

    Article  Google Scholar 

  • Marx SK, Kamber BS, McGowan HA (2005) Estimates of Australian dust flux into New Zealand: quantifying the eastern Australian dust plume pathway using trace element calibrated 210Pb as a monitor. Earth Plan Sci Lett 239:336–351

    Article  CAS  Google Scholar 

  • McGowan HA, Kamber B, McTainsh GH, Marx SK (2005) High resolution provenancing of long travelled dust deposited on the Southern Alps, New Zealand. Geomorphology 69:208–221

    Article  Google Scholar 

  • McTainsh G, Strong C (2007) The role of aeolian dust in ecosystems. Geomorphology 89:39–54

    Article  Google Scholar 

  • McTainsh GH, Lynch AW, Tews EK (1998) Climatic controls upon dust storm occurrence in eastern Australia. J Arid Environ 39:457–466

    Article  Google Scholar 

  • Middleton NJ (1989) Climatic controls on the frequency, magnitude and distribution of dust storms: examples from India/Pakistan, Mauritania and Mongolia. In: Leinen M, Sarnthein M (eds) Paleoclimatology andpaleometeorology: modern and past patterns of global atmospheric transport. Kluwer, Boston, pp 97–132

    Chapter  Google Scholar 

  • Neff JC et al (2008) Increasing aeolian dust deposition in the western United States linked to human activity. Nat Geosci 1:189–195

    Article  CAS  Google Scholar 

  • Okin GS, Mahowald N, Chadwick OA and Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Glob Biogeochem Cycl 18(2) doi:10.1029/2003GB002145

  • Painter TH et al (2010) Response of Colorado river runoff to dust radiative forcing in snow. PNAS 107:17125–17130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peel MC, Finlayson BL (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562

    Article  CAS  PubMed  Google Scholar 

  • Pointing SB et al (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ Microbiol 9:414–424

    Article  CAS  PubMed  Google Scholar 

  • Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed Engl 44:7520–7540

    Google Scholar 

  • Prospero JM, Lamb PJ (2003) African droughts and dust transport to the Caribbean: climate change implications. Science 302:1024–1027

    Article  CAS  PubMed  Google Scholar 

  • Prospero JM, Blades E, Mathison G, Naidu R (2005) Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia 21:1–19

    Article  Google Scholar 

  • Reichstein M et al (2013) Climate extremes and the carbon cycle. Nature 500:287–295

    Article  CAS  PubMed  Google Scholar 

  • Requena N et al (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds R (2001) Aeolian dust in Colorado plateau soils: nutrient inputs and recent change in source. PNAS 98:7123–7127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science 305:1926–1929

    Article  CAS  PubMed  Google Scholar 

  • Rypien K (2008) African dust is an unlikely source of Aspergillus sydowii, the causative agent of sea fan disease. Mar Ecol Prog Ser 367:125–131

    Article  Google Scholar 

  • Safriel L (2006) Deserts and the planet—linkages between deserts and non-deserts. In: Ezcurra E (ed) Global desert outlook. Scanprint, Denmark, pp 49–72

    Google Scholar 

  • Sanders JW et al (2005) Impact of illness and non-combat injury during operations Iraqi freedom and enduring freedom (Afghanistan). Am J Trop Med Hyg 73:713–719

    PubMed  Google Scholar 

  • Schlesinger Wh et al (1990) Biological feedbacks in global desertification. Science 247:1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger P, Mamane Y, Grishkan I (2006) Transport of microorganisms to Israel during Saharan dust events. Aerobiologia 22:259–273

    Article  Google Scholar 

  • Smith DJ et al (2013) Intercontinental dispersal of bacteria and archaea by transpacific winds. Appl Environ Microbiol 79:1134–1139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sohm JA, Webb EA, Capone DG (2011) Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol 9:499–508

    Article  CAS  PubMed  Google Scholar 

  • Thomas DSG (2011) Arid environments: their nature and extent. In Thomas DSG (Ed) Arid zone geomorphology: process, form and change in drylands, 3rd edn. Wiley-Balckwell, London, pp 3–16

  • UNEP (1992) World atlas of desertification. Edward Arnold, London

    Google Scholar 

  • Warren-Rhodes KA et al (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama desert. Microb Ecol 52:389–398

    Article  PubMed  Google Scholar 

  • Warren-Rhodes KA et al (2007) Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61:470–482

    Article  CAS  PubMed  Google Scholar 

  • Weir-Brush JR, Garrison VH, Smith GW, Shinn EA (2004) The relationship between gorgonian coral (Cnidaria: Gorgonacea) diseases and African dust storms. Aerobiologia 20:119–126

    Article  Google Scholar 

  • Womack AM, Bohannan BJM, Green JL (2010) Biodiversity and biogeography of the atmosphere. Phil Trans R Soc B 365:3645–3653

    Article  PubMed Central  PubMed  Google Scholar 

  • Wong FKY et al (2010) Hypolithic microbial community of quartz pavement in the high-altitude tundra of central Tibet. Microb Ecol 60:730–739

    Article  PubMed Central  PubMed  Google Scholar 

  • Woo AC et al (2013) Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape. Atmos Environ 74:291–300

    Article  CAS  Google Scholar 

  • Zhang YM, Wang HL, Wang XQ, Yang WK, Zhang DY (2006) The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut desert of northwestern China. Geoderma 132:441–449

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen B. Pointing or Jayne Belnap.

Additional information

Communicated by Guest Editors of S.I.: Biocrust.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pointing, S.B., Belnap, J. Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales. Biodivers Conserv 23, 1659–1667 (2014). https://doi.org/10.1007/s10531-014-0690-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0690-x

Keywords

Navigation