Skip to main content

Advertisement

Log in

Mosaic interplay of floral diversity, soil properties, disturbance intensity and elevation in the riparian ecosystem under semi-subsistence agriculture of Cordillera Central Range, Northern Philippines

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Agricultural activities are known to have significant implications on floral diversity and edaphic condition of riparian ecosystems but the data base to elucidate this phenomenon in the tropical semi-subsistence agriculture setting is insufficient. This study documented the floral diversity and edaphic conditions in the riparian zones of Amburayan River, Northern Philippines as exposed to varying intensities of agricultural activities. A total of 249 vascular plant species belonging to 200 genera and 74 families were documented. Greater agricultural disturbance resulted to lower indigenous and endemic species, lower overall species diversity, lower shrub and tree diversity, but higher herb diversity. In terms of edaphic factors, the soil pH ranges from moderately to slightly acidic (5.37–6.43) while soil texture ranges from loamy sand and sandy loam. The soil organic carbon is lowest in the intensely disturbed stations and highest in less disturbed stations while soil moisture content is significantly higher in the less disturbed stations than in intensely and moderately disturbed stations. Lastly, the soil nutrients, N, P and K range from 0.04–0.36 mg/kg, 4.13–64.90 mg/kg and 86.67 to 253.33 cmol/kg, respectively. The study found significant correlations between the soil condition, agricultural disturbances and floral diversity of Amburayan River. These findings illustrate for the first time in available literature the mosaic interplay of intensity of disturbance, elevation and soil properties with floral diversity in riparian ecosystem under a tropical semi-subsistence agriculture setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alemu GT, Ayele ZB, Berhanu AA (2017) Effects of Land fragmentation on productivity in Northwestern Ethiopia. Adv Agric. https://doi.org/10.1155/2017/4509605

    Article  Google Scholar 

  • Antonio J, Bacate M, Butag J, Ladoan S, Vicente G, Napaldet JT (2020) Vascular plant diversity in Benguet State University La Trinidad main campus, Philippines: a status report and a database to support the attainment of sustainable development. J Wetl Biodivers 10:21–42

    Google Scholar 

  • Atkinson SF, Lake MC (2020) Prioritizing riparian corridors for ecosystem restoration in urbanizing watersheds. PeerJ 8:e8174. https://doi.org/10.7717/peerj.8174

    Article  PubMed  PubMed Central  Google Scholar 

  • Azlan A, Aweng ER, Ibrahim CO, Noorhaidah A (2012) Correlation between soil organic matter, total organic matter and water content with climate and depths of soil at different land use in Kelantan, Malaysia. J Appl SCI Environ Manag 16(4):353–358

    CAS  Google Scholar 

  • Balangen DA, Catones MS, Bayeng JM, Napaldet JT (2021) Floral diversity of intek river in Tuba, Benguet, Northern Philippines. J Wetl Biodiversity 11:63–79

    Google Scholar 

  • Barbosa E, Tomlinson K, Carvalheiro L, Kirkman K, Bie S, Prins H, Langevelde F (2014) Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of savanna tree species. PLoS ONE 9:e92619. https://doi.org/10.1371/journal.pone.0092619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batani RS, Basbas A, Loncio R, Napaldet JT (2019) Floral diversity assessment of Palina River, Kibungan, Benguet, Philippines as influenced by environmental variable. Terminal Report. Benguet State University

  • Beni OH, Salehi MH, Harchegani HB (2010) Estimation of soil organic matter by loss-on-ignition procedure in four major plains of Chaharmahal-va-Bakhtiari province. J Sci Technol Agric Nat Resour 13(50B):77–89

    Google Scholar 

  • Bieganowski A, Ryżak M (2011) Soil Texture: Measurement Methods. In: Gliński J, Horabik J, Lipiec J (eds) Encyclopedia of agrophysics. Encyclopedia of earth sciences series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3585-1_157

    Chapter  Google Scholar 

  • Burdon FJ, Ramberg E, Sargac J, Forio MAE, de Saeyer N, Mutinova PT, Moe TF, Pavelescu MO, Dinu V, Cazacu C et al (2020) Assessing the benefits of forested riparian zones: a qualitative index of riparian integrity is positively associated with ecological status in European Streams. Water 12:1178

    Article  Google Scholar 

  • Buschiazzo DE, Estelrich HD, Aimar SB, Viglizzo E, Babinec FJ (2004) Soil texture and tree coverage influence on organic matter. J Range Manag 57:511–516

    Article  Google Scholar 

  • Cabangdi RB Jr, Celino HO, Sugano, Gomez RA (2008) Perceived biodiversity at Mt. Pulag National Park. CAS Res J.

  • Capon S, Dowe J (2012) Diversity and dynamics of riparian vegetation. https://www.researchgate.net/publication/265567903_CHAPTER_2_Diversity_and_dynamics_of_riparian_vegetation. Accessed 02 Dec 2021.

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199(4335):1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Convention on Biological Diversity (n.d.) Philippines—Biodiversity Facts Main Details. https://www.cbd.int/countries/profile/?country=ph#:~:text=The%20Philippines%20is%20one%20of,world's%20plant%20and%20animal%20species. Accessed 30 June 2021.

  • Datic CG, Laurean CP, Nagpala AL (2015) Soil quality assessment of conventional and organic farms in La Trinidad, Benguet. BSU Res J 74:1–9

    Google Scholar 

  • Dybzinski R, Fargione JE, Zak DR, Fornara D, Tilman D (2008) Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia 158(1):85–93

    Article  PubMed  Google Scholar 

  • Fajardo DRM, Jumawan JH (2015) Riparian, channel and environment (RCE) inventory, species composition and vegetation analysis of the streams in Tubay, Agusan Del Norte, Philippines. J Biodivers Environ Sci 7(5):119–127

    Google Scholar 

  • Fu B, Wang J, Chen L, Qiu Y (2003) The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. CATENA 54:197–213

    Article  Google Scholar 

  • Gamito S (2010) Caution is needed when applying Margalef diversity index. Ecol Ind 10:550–551

    Article  Google Scholar 

  • Goebel C, Pregitzer K, Palik B (2006) Landscape hierarchies influence riparian ground-flora communities in Wisconsin, USA. For Ecol Manag 230:43–54. https://doi.org/10.1016/j.foreco.2006.04.035

    Article  Google Scholar 

  • Guron M, Lumpio R, Napaldet JT (2019) Comparison of floral diversity of pine forest, agroforestry and agricultural land-uses in talinguroy research station, Benguet State University, Northern Philippines. Mount J Sci Interdiscip Res 79:21–34

    Google Scholar 

  • Gutierrez RM, Barraquio WL (2010) Acid-tolerant rhizobia of Phaseolus vulgaris L. from the intensively cropped soils of La Trinidad, Benguet, Philippines. Philipp J Sci 139(1):79–90

    Google Scholar 

  • Harpole WS, Sullivan LL, Lind EM, Firn J, Adler PB, Borer ET, Chase J, Fay PA, Hautier Y, Hillebrand H (2016) Addition of multiple limiting resources reduces grassland diversity. Nature 537:93–96

    Article  CAS  PubMed  Google Scholar 

  • Hoogsteen M, Lantinga E, Bakker E, Groot J, Tittonell PA (2015) Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. Eur J Soil Sci. https://doi.org/10.1111/ejss.12224

    Article  Google Scholar 

  • Isbell F, Adler PR, Eisenhauer N, Fornara D, Kimmel K, Kremen C, Letourneau DK, Liebman M, Polley HW, Quijas S, Scherer-Lorenzen M (2017) Benefits of increasing plant diversity in sustainable agroecosystems. J Ecol 105:871–879

    Article  Google Scholar 

  • Janssens F, Peeters A, Tallowin JRB (1998) Relationship between soil chemical factors and grassland diversity. Plant Soil 202(1):69–78

    Article  CAS  Google Scholar 

  • Jayakumar S, Kim S, Joon H (2011) Floristic inventory and diversity assessment-a critical review. Proc Int Acad Ecol Environ Sci 1:151–168

    Google Scholar 

  • Khan S, Mulvaney R, Ellsworth T (2014) The potassium paradox: implications for soil fertility, crop production and human health. Renew Agric Food Syst 29(1):3–27. https://doi.org/10.1017/S1742170513000318.Accessed06July

    Article  Google Scholar 

  • Laurean CP, Fagyan AW, Dayap EP (2015) Soil fertility status of major agricultural areas in the seven municipalities of Benguet. BSU Res J 74:10–34

    Google Scholar 

  • Li X, Chang SX, Liu J, Zheng Z, Wang X (2017) Topography-soil relationships in a hilly evergreen broadleaf forest in subtropical China. J Soils Sediments 17(4):1101–1115

    Article  CAS  Google Scholar 

  • Lind L, Hasselquist EM, Laudon H (2019) Towards ecologically functional riparian zones: a meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. J Environ Manag 249:109391. https://doi.org/10.1016/j.jenvman.2019.109391

    Article  Google Scholar 

  • Looy KV, Tormos T, Souchon Y, Gilvear D (2017) Analyzing riparian zone ecosystem services bundles to instruct river management. Int J Biodivers Sci Ecosyst Serv Manag 13(1):330–341. https://doi.org/10.1080/21513732.2017.1365773

    Article  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime GP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. https://doi.org/10.1126/science.1064088

    Article  CAS  PubMed  Google Scholar 

  • Lubos LC, Amoroso VB, Cortico F (2015) Species richness and riparian vegetation of plants in Cagayan de Oro River, Mindanao, Philippines. Asian J Biodiver 6(2):41–68

    Google Scholar 

  • Lumbres RIC, Palaganas JA, Micosa SC (2012) Floral diversity assessment in Alno communal mixed forest in Benguet, Philippines. Landscape Ecol Eng 10:361–368. https://doi.org/10.1007/s11355-012-0204-5

    Article  Google Scholar 

  • Melander B, Munier-Jolain N, Charles R, Wirth J, Schwarz J, Weide R, Bonin L, Jensen P, Kudsk P (2013) European perspectives on the adoption of nonchemical weed management in reduced-tillage systems for arable crops. Weed Technol 27:231–240. https://doi.org/10.2307/23358330

    Article  Google Scholar 

  • Mittelbach GG, Steiner CF, Scheiner SM (2001) What is the observed relationship between species richness and productivity? Ecology 82(9):2381–2396

    Article  Google Scholar 

  • Mligo C (2017) Diversity and distribution pattern of riparian plant species in the Wami River system, Tanzania. J Plant Ecol 10(2):259–270. https://doi.org/10.1093/jpe/rtw021

    Article  Google Scholar 

  • Nadeau MB, Sullivan TP (2015) Relationships between plant biodiversity and soil fertility in a mature tropical forest, Costa Rica. Int J for Res. https://doi.org/10.1155/2015/732946

    Article  Google Scholar 

  • Napaldet JT, Buot IE Jr (2019) Diversity of aquatic macrophytes in Balili River La, Trinidad, Benguet, Philippines as potential phytoremediators. Biodiversitas 20(5):1048–1054. https://doi.org/10.13057/biodiv/d200416

    Article  Google Scholar 

  • O’Kelly BC (2004) Accurate determination of moisture content of organic soils using the oven drying method. Dry Technol 22(7):1767–1776. https://doi.org/10.1081/DRT-200025642

    Article  Google Scholar 

  • Pasion BO, Barrias CDP, Asuncion MP, Angadol AH, Pabiling RR, Pasion A Jr, Braulio AA, Baysa AM Jr (2021) Assessing tree diversity and carbon density of a riparian zone within a protected area in southern Philippines. J Asia Pac Biodivers 14(1):78–86

    Article  Google Scholar 

  • Pausas JG, Austin MP (2001) Patterns of plant species richness in relation to different environments: an appraisal. J Veg Sci 12(2):153–166

    Article  Google Scholar 

  • PCARRD (Philippine Council for Agriculture, Forestry and Natural Resources Research and Development) (1987) Manual on vegetational analysis for grassland and forest ecosystems. Department of Science and Technology, Los Baños.

  • Pelser PB, Barcelona JF, Nickrent DL (eds) (2011 onwards) Co’s Digital Flora of the Philippines. www.philippineplants.org.

  • Plants of the World Online (2021) Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/. Accessed June–Dec 2021.

  • Rieger I, Kowarik I, Ziche D, Wellbrock N, Cierjacks A (2019) Linkages between phosphorus and plant diversity in central european forest ecosystems—complementarity or competition? Forests 10(12):1156. https://doi.org/10.3390/f10121156

    Article  Google Scholar 

  • Sargac J, Johnson RK, Burdon FJ, Truchy A, Rîsnoveanu G, Goethals P, McKie BG (2021) Forested riparian buffers change the taxonomic and functional composition of stream invertebrate communities in agricultural catchments. Water 13:1028. https://doi.org/10.3390/w13081028

    Article  CAS  Google Scholar 

  • Sarmiento RT, Garcia GAA, Varela RP (2017) Diversity of the riparian vegetation of lower agusan river towards establishing the sago-based eco belt for disaster risk reduction. J Biodivers Environ Sci 10(4):70–80

    Google Scholar 

  • Schulze ED, Beck E, Buchmann N, Clemens S, Müller-Hohenstein K, Scherer-Lorenzen M (2019) Biodiversity. In: Plant ecology. Springer, Berlin. https://doi.org/10.1007/978-3-662-56233-8_20

  • Slessarev EW, Lin Y, Bingham NL, Johnson JE, Dai Y, Schimel JP (2016) Water balance creates a threshold in soil pH at the global scale. Nature 540(7634):567

    Article  CAS  PubMed  Google Scholar 

  • Smith JD (2014) The relationship between riparian zone width and floristic quality in Shenandoah County, Virginia. Masters Theses, 2010–2019. 5. https://commons.lib.jmu.edu/master201019/5. Accessed 15 June 2021

  • ter Braak CJF (1987) Ordination. In: Jongman RHG, ter Braak CJE, van Tongeren OER (eds) Data analysis in community and landscape ecology (reprinted by Cambridge University Press, Cambridge, 1995). Pudoc, Wageningen, pp 91–173

    Google Scholar 

  • Ter Braak CJE (1994) Canonical community ordination. Part I: Basic theory and linear methods. Écoscience 1(2):127–140. https://doi.org/10.1080/11956860.1994.11682237

    Article  Google Scholar 

  • ter Braak C, Verdonschot P (1995) Canonical correspondence analysis and relate multivariate methods in aquatic ecology. Aquat Sci 57:255–289. https://doi.org/10.1007/BF00877430

    Article  Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379(6567):718–720

    Article  CAS  Google Scholar 

  • Torrefiel JT, Buot IE Jr (2017) Weed species composition in the riparian zone of Molawin River, Laguna, Philippines. J Wetl Biodivers 7:57–73

    Google Scholar 

  • Travlos IS, Economou G (2010) Effects of no-till farming on global weed related problems and weed communities of Greece and the ongoing challenges of integrated weed and crop management. In: ET Nardali (ed) No-till farming: effects on soil, pros and cons and potential, (Hauppauge, NY: Nova Science Publishers), pp 145–157

  • Travlos IS, Cheimona N, Roussis I, Bilalis DJ (2018) Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Front Environ Sci 6(11):1–10

    Google Scholar 

  • Tropicos (2013) Tropicos. https://www.tropicos.org/home. Accessed 19 Feb 2021.

  • Verry E, Dolloff C, Manning M (2004) Riparian ecotone: A functional definition and delineation for resource assessment. Water Air Soil Pollut Focus 4:67–94. https://doi.org/10.1023/B:WAFO.0000012825.77300.08

    Article  Google Scholar 

  • US-EPA (2012) Soil Sampling Standard Operating Procedures. https://archive.epa.gov/region9/toxic/web/pdf/epa-ert-soil-sop-2012.pdf. Accessed June 2020.

  • World Flora Online (2021) World Flora Online. Published on the Internet. http://www.worldfloraonline.org. Accessed Jun–Dec 2021.

  • Xu X, Du X, Wang F, Sha J, Chen Q, Tian G, Zhu Z, Ge S, Jiang Y (2020) Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Front Plant Sci 11:904. https://doi.org/10.3389/fpls.2020.00904

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jones T. Napaldet.

Additional information

Communicated by Télesphore Sime-Ngando.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dulnuan, M.M., Napaldet, J.T. Mosaic interplay of floral diversity, soil properties, disturbance intensity and elevation in the riparian ecosystem under semi-subsistence agriculture of Cordillera Central Range, Northern Philippines. Aquat Ecol 57, 613–631 (2023). https://doi.org/10.1007/s10452-023-10033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-023-10033-x

Keywords

Navigation