Skip to main content
Log in

Exfoliated graphite for sorption of liquid hydrocarbons from the water surface: Effect of preparation conditions on sorption capacity and water wettability

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Exfoliated graphite (EG) is a promising macroporous sorbent for oils and liquid hydrocarbons on water surfaces. The preparation of EG includes a synthesis of graphite intercalation compounds, expandable graphite and its thermal exfoliation. The structure of the initial graphite intercalation compound (GIC) has a significant influence on the structure of exfoliated graphite and its sorption properties: sorption capacity and selectivity of water/octane sorption. Thus, the aim of this work was to investigate the relationship between the structure of EG based on 1st stage, 2nd stage, 3rd stage, 4th stage GICs and EG sorption properties and water wettability. The influence of the GIC stage number on the EG sorption and surface properties is studied. EG obtained from 1st stage GIC at 1000 °C is characterized by a higher sorption capacity toward octane than EG from 4th stage GIC. The selectivity of octane/water sorption reduces when decreasing the GIC stage number from 4 to 1. The high sorption of water can be explained by a higher surface area of EG and the presence of remaining oxygen groups on the edges of graphite crystallites in the EG structure. The EG structure was investigated by XRD, SEM, nitrogen adsorption–desorption method, FTIR and Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study can be provided by the corresponding author upon request.

References

  1. Annamalai, M., Gopinadhan, K., Han, S.A., Saha, S., Park, H.J., Cho, E.B., Kumar, B., Patra, A., Kim, S.W., Venkatesan, T.: Surface energy and wettability of van der Waals structures. Nanoscale 8, 5764–5770 (2016). https://doi.org/10.1039/c5nr06705g

    Article  CAS  PubMed  Google Scholar 

  2. Asif, Z., Chen, Z., An, C., Dong, J.: Environmental Impacts and Challenges Associated with Oil Spills on Shorelines. J Mar Sci Eng. 10, 762 (2022). https://doi.org/10.3390/jmse10060762

    Article  Google Scholar 

  3. Barron, M.G.: Photoenhanced Toxicity of Petroleum to Aquatic Invertebrates and Fish. Arch. Environ. Contam. Toxicol. 73, 40–46 (2017). https://doi.org/10.1007/s00244-016-0360-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barron, M.G., Vivian, D.N., Heintz, R.A., Yim, U.H.: Long-Term Ecological Impacts from Oil Spills: Comparison of Exxon Valdez, Hebei Spirit, and Deepwater Horizon. Environ. Sci. Technol. 54, 6456–6467 (2020). https://doi.org/10.1021/acs.est.9b05020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bentini, R., Pola, A., Rizzi, L.G., Athanassiou, A., Fragouli, D.: A highly porous solvent free PVDF/expanded graphite foam for oil/water separation. Chem. Eng. J. 372, 1174–1182 (2019). https://doi.org/10.1016/j.cej.2019.04.196

    Article  CAS  Google Scholar 

  6. Bhardwaj, N., Bhaskarwar, A.N.: A review on sorbent devices for oil-spill control. Environ. Pollut. 243, 1758–1771 (2018). https://doi.org/10.1016/j.envpol.2018.09.141

    Article  CAS  PubMed  Google Scholar 

  7. Bhushan, B.: Bioinspired oil–water separation approaches for oil spill clean-up and water purification. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 377, 20190120 (2019). https://doi.org/10.1098/rsta.2019.0120

  8. Cakir, E., Sevgili, C., Fiskin, R.: An analysis of severity of oil spill caused by vessel accidents. Transp Res D Transp Environ. 90, 102662 (2021). https://doi.org/10.1016/j.trd.2020.102662

    Article  Google Scholar 

  9. Cançado, L.G., Takai, K., Enoki, T., Endo, M., Kim, Y.A., Mizusaki, H., Jorio, A., Coelho, L.N., Magalhães-Paniago, R., Pimenta, M.A.: General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106 (2006). https://doi.org/10.1063/1.2196057

    Article  CAS  Google Scholar 

  10. Cançado, L.G., Takai, K., Enoki, T., Endo, M., Kim, Y.A., Mizusaki, H., Speziali, N.L., Jorio, A., Pimenta, M.A.: Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon N Y. 46, 272–275 (2008). https://doi.org/10.1016/j.carbon.2007.11.015

    Article  CAS  Google Scholar 

  11. Cermak, M., Perez, N., Collins, M., Bahrami, M.: Material properties and structure of natural graphite sheet. Sci. Rep. 10, 18672 (2020). https://doi.org/10.1038/s41598-020-75393-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, P.-H., Chung, D.D.L.: Dynamic mechanical behavior of flexible graphite made from exfoliated graphite. Carbon N Y. 50, 283–289 (2012). https://doi.org/10.1016/j.carbon.2011.08.048

    Article  CAS  Google Scholar 

  13. Choi, K.-H., Park, M.-S., Ha, M., Hur, J.-I., Cheong, H.-K.: Cancer Incidence Trend in the Hebei Spirit Oil Spill Area, from 1999 to 2014: An Ecological Study. Int. J. Environ. Res. Public Health 15, 1006 (2018). https://doi.org/10.3390/ijerph15051006

    Article  PubMed  PubMed Central  Google Scholar 

  14. Coronel Vargas, G., Au, W.W., Izzotti, A.: Public health issues from crude-oil production in the Ecuadorian Amazon territories. Sci. Total Environ. 719, 134647 (2020). https://doi.org/10.1016/j.scitotenv.2019.134647

    Article  CAS  PubMed  Google Scholar 

  15. Darabut, A.M., Lobko, Y., Yakovlev, Y., Rodríguez, M.G., Veltruská, K., Šmíd, B., Kúš, P., Nováková, J., Dopita, M., Vorokhta, M., Kopecký, V., Procházka, M., Matolínová, I., Matolín, V.: Influence of thermal treatment on the structure and electrical conductivity of thermally expanded graphite. Adv. Powder Technol. 33, 103884 (2022). https://doi.org/10.1016/j.apt.2022.103884

    Article  CAS  Google Scholar 

  16. Dhaka, A., Chattopadhyay, P.: A review on physical remediation techniques for treatment of marine oil spills. J. Environ. Manage. 288, 112428 (2021). https://doi.org/10.1016/j.jenvman.2021.112428

    Article  CAS  PubMed  Google Scholar 

  17. Dimiev, A.M., Ceriotti, G., Behabtu, N., Zakhidov, D., Pasquali, M., Saito, R., Tour, J.M.: Direct Real-Time Monitoring of Stage Transitions in Graphite Intercalation Compounds. ACS Nano 7, 2773–2780 (2013). https://doi.org/10.1021/nn400207e

    Article  CAS  PubMed  Google Scholar 

  18. Dimiev, A.M., Shukhina, K., Behabtu, N., Pasquali, M., Tour, J.M.: Stage Transitions in Graphite Intercalation Compounds: Role of the Graphite Structure. The Journal of Physical Chemistry C. 123, 19246–19253 (2019). https://doi.org/10.1021/acs.jpcc.9b06726

    Article  CAS  Google Scholar 

  19. Ferrari, A.C., Basko, D.M.: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013). https://doi.org/10.1038/nnano.2013.46

    Article  CAS  PubMed  Google Scholar 

  20. Goudarzi, R., Hashemi Motlagh, G.: The effect of graphite intercalated compound particle size and exfoliation temperature on porosity and macromolecular diffusion in expanded graphite. Heliyon. 5, e02595 (2019). https://doi.org/10.1016/j.heliyon.2019.e02595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hallam, K.R., Darnbrough, J.E., Paraskevoulakos, C., Heard, P.J., Marrow, T.J., Flewitt, P.E.J.: Measurements by x-ray diffraction of the temperature dependence of lattice parameter and crystallite size for isostatically-pressed graphite. Carbon Trends. 4, 100071 (2021). https://doi.org/10.1016/j.cartre.2021.100071

    Article  CAS  Google Scholar 

  22. He, J., Song, L., Yang, H., Ren, X., Xing, L.: Preparation of Sulfur-Free Exfoliated Graphite by a Two-Step Intercalation Process and Its Application for Adsorption of Oils. J. Chem. 2017, 1–8 (2017). https://doi.org/10.1155/2017/5824976

    Article  CAS  Google Scholar 

  23. Helle, I., Mäkinen, J., Nevalainen, M., Afenyo, M., Vanhatalo, J.: Impacts of Oil Spills on Arctic Marine Ecosystems: A Quantitative and Probabilistic Risk Assessment Perspective. Environ. Sci. Technol. 54, 2112–2121 (2020). https://doi.org/10.1021/acs.est.9b07086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hou, S., He, S., Zhu, T., Li, J., Ma, L., Du, H., Shen, W., Kang, F., Huang, Z.-H.: Environment-friendly preparation of exfoliated graphite and functional graphite sheets. Journal of Materiomics. 7, 136–145 (2021). https://doi.org/10.1016/j.jmat.2020.06.009

    Article  Google Scholar 

  25. Hou, S., Zhu, T., Shen, W., Kang, F., Inagaki, M., Huang, Z.-H.: Exfoliated graphite blocks with resilience prepared by room temperature exfoliation and their application for oil-water separation. J. Hazard. Mater. 424, 127724 (2022). https://doi.org/10.1016/j.jhazmat.2021.127724

    Article  CAS  PubMed  Google Scholar 

  26. Ivanov, A.V., Maksimova, N.V., Manylov, M.S., Kirichenko, A.N., Kalachev, I.L., Malakho, A.P., Avdeev, V.V.: Gas permeability of graphite foil prepared from exfoliated graphite with different microstructures. J. Mater. Sci. 56, 4197–4211 (2021). https://doi.org/10.1007/s10853-020-05541-2

    Article  CAS  Google Scholar 

  27. Ivanov, A.V., Volkova, S.I., Maksimova, N.V., Pokholok, K.V., Kravtsov, A.V., Belik, A.A., Posokhova, S.M., Kalachev, I.L., Avdeev, V.V.: Exfoliated graphite with γ-Fe2O3 for the removal of oil and organic pollutants from the water surface: Synthesis, Mossbauer study, sorption and magnetic properties. J. Alloys Compd. 960, 170619 (2023). https://doi.org/10.1016/j.jallcom.2023.170619

    Article  CAS  Google Scholar 

  28. Jagiello, J., Olivier, J.P.: 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon N Y. 55, 70–80 (2013). https://doi.org/10.1016/j.carbon.2012.12.011

    Article  CAS  Google Scholar 

  29. Khorsand Zak, A., Abd. Majid, W.H., Abrishami, M.E., Yousefi, R.: X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

  30. Khursigara, A.J., Johansen, J.L., Esbaugh, A.J.: The effects of acute crude oil exposure on growth and competition in red drum, Sciaenops ocellatus. Sci. Total Environ. 751, 141804 (2021). https://doi.org/10.1016/j.scitotenv.2020.141804

    Article  CAS  PubMed  Google Scholar 

  31. Kozbial, A., Trouba, C., Liu, H., Li, L.: Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles. Langmuir 33, 959–967 (2017). https://doi.org/10.1021/acs.langmuir.6b04193

    Article  CAS  PubMed  Google Scholar 

  32. Kravtsov, A.V., Shornikova, O.N., Bulygina, A.I., Solopov, A.B., Avdeev, V.V.: Effect of the Granulometric Composition of Natural Graphite and the Means of Synthesis on the Pore Structure of Thermally Expanded Graphite. Russ. J. Phys. Chem. A 96, 2729–2736 (2022). https://doi.org/10.1134/S0036024422120172

    Article  CAS  Google Scholar 

  33. Kwok, R.K., McGrath, J.A., Lowe, S.R., Engel, L.S., Jackson, W.B., Curry, M.D., Payne, J., Galea, S., Sandler, D.P.: Mental health indicators associated with oil spill response and clean-up: cross-sectional analysis of the GuLF STUDY cohort. Lancet Public Health. 2, e560–e567 (2017). https://doi.org/10.1016/S2468-2667(17)30194-9

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lutfullin, M.A., Shornikova, O.N., Vasiliev, A.V., Pokholok, K.V., Osadchaya, V.A., Saidaminov, M.I., Sorokina, N.E., Avdeev, V.V.: Petroleum products and water sorption by expanded graphite enhanced with magnetic iron phases. Carbon N Y. 66, 417–425 (2014). https://doi.org/10.1016/j.carbon.2013.09.017

    Article  CAS  Google Scholar 

  35. Nishi, Y., Iwashita, N., Sawada, Y., Inagaki, M.: Sorption kinetics of heavy oil into porous carbons. Water Res. 36, 5029–5036 (2002). https://doi.org/10.1016/S0043-1354(02)00225-7

    Article  CAS  PubMed  Google Scholar 

  36. Oliveira, L.M.T.M., Saleem, J., Bazargan, A., Duarte, J.L. da S., McKay, G., Meili, L.: Sorption as a rapidly response for oil spill accidents: A material and mechanistic approach. J Hazard Mater. 407, 124842 (2021). https://doi.org/10.1016/j.jhazmat.2020.124842

  37. Pavlova, J.A., Ivanov, A.V., Maksimova, N.V., Pokholok, K.V., Vasiliev, A.V., Malakho, A.P., Avdeev, V.V.: Two-stage preparation of magnetic sorbent based on exfoliated graphite with ferrite phases for sorption of oil and liquid hydrocarbons from the water surface. J. Phys. Chem. Solids 116, 299–305 (2018). https://doi.org/10.1016/j.jpcs.2018.01.044

    Article  CAS  Google Scholar 

  38. Pham, T.V., Nguyen, T.T., Nguyen, D.T., Thuan, T.V., Bui, P.Q.T., Viet, V.N.D., Bach, L.G.: The Preparation and Characterization of Expanded Graphite via Microwave Irradiation and Conventional Heating for the Purification of Oil Contaminated Water. J. Nanosci. Nanotechnol. 19, 1122–1125 (2019). https://doi.org/10.1166/jnn.2019.15926

    Article  CAS  PubMed  Google Scholar 

  39. Schuepfer, D.B., Badaczewski, F., Guerra-Castro, J.M., Hofmann, D.M., Heiliger, C., Smarsly, B., Klar, P.J.: Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. Carbon N Y. 161, 359–372 (2020). https://doi.org/10.1016/j.carbon.2019.12.094

    Article  CAS  Google Scholar 

  40. Sorokina, N.E., Redchitz, A.V., Ionov, S.G., Avdeev, V.V.: Different exfoliated graphite as a base of sealing materials. J. Phys. Chem. Solids 67, 1202–1204 (2006). https://doi.org/10.1016/j.jpcs.2006.01.048

    Article  CAS  Google Scholar 

  41. Sun, Y., Chen, L., Yu, J., Yoon, B., Lee, S.K., Nam, J.-D., Ci, L., Suhr, J.: Lightweight graphene oxide-based sponges with high compressibility and durability for dye adsorption. Carbon N Y. 160, 54–63 (2020). https://doi.org/10.1016/j.carbon.2020.01.009

    Article  CAS  Google Scholar 

  42. Sykam, N., Jayram, N.D., Rao, G.M.: Highly efficient removal of toxic organic dyes, chemical solvents and oils by mesoporous exfoliated graphite: Synthesis and mechanism. Journal of Water Process Engineering. 25, 128–137 (2018). https://doi.org/10.1016/j.jwpe.2018.05.013

    Article  Google Scholar 

  43. Takeuchi, K., Fujishige, M., Kitazawa, H., Akuzawa, N., Medina, J.O., Morelos-Gomez, A., Cruz-Silva, R., Araki, T., Hayashi, T., Terrones, M., Endo, M.: Oil sorption by exfoliated graphite from dilute oil–water emulsion for practical applications in produced water treatments. Journal of Water Process Engineering. 8, 91–98 (2015). https://doi.org/10.1016/j.jwpe.2015.09.002

    Article  Google Scholar 

  44. Takeuchi, K., Kitazawa, H., Fujishige, M., Akuzawa, N., Ortiz-Medina, J., Morelos-Gomez, A., Cruz-Silva, R., Araki, T., Hayashi, T., Endo, M.: Oil removing properties of exfoliated graphite in actual produced water treatment. Journal of Water Process Engineering. 20, 226–231 (2017). https://doi.org/10.1016/j.jwpe.2017.11.009

    Article  Google Scholar 

  45. Tian, Y., Ma, H., Xing, B.: Preparation of surfactant modified magnetic expanded graphite composites and its adsorption properties for ionic dyes. Appl. Surf. Sci. 537, 147995 (2021). https://doi.org/10.1016/j.apsusc.2020.147995

    Article  CAS  Google Scholar 

  46. Toyoda, M., Hou, S., Huang, Z.-H., Inagaki, M.: Exfoliated graphite: room temperature exfoliation and their applications. Carbon Letters. 33, 335–362 (2023). https://doi.org/10.1007/s42823-022-00450-7

    Article  Google Scholar 

  47. Toyoda, M., Inagaki, M.: Heavy oil sorption using exfoliated graphite. Carbon N Y. 38, 199–210 (2000). https://doi.org/10.1016/S0008-6223(99)00174-8

    Article  CAS  Google Scholar 

  48. Toyoda, M., Nishi, Y., Iwashita, N., Inagaki, M.: Sorption and recovery of heavy oils using exfoliated graphite Part IV: Discussion of high oil sorption of exfoliated graphite. Desalination 151, 139–144 (2002). https://doi.org/10.1016/S0011-9164(02)00992-X

    Article  Google Scholar 

  49. van Heerden, X., Badenhorst, H.: The influence of three different intercalation techniques on the microstructure of exfoliated graphite. Carbon N Y. 88, 173–184 (2015). https://doi.org/10.1016/j.carbon.2015.03.006

    Article  CAS  Google Scholar 

  50. Wei, Q., Xu, L., Tang, Z., Xu, Z., Xie, C., Guo, L., Li, W.: High-performance expanded graphite from flake graphite by microwave-assisted chemical intercalation process. J. Ind. Eng. Chem. 122, 562–572 (2023). https://doi.org/10.1016/j.jiec.2023.03.020

    Article  CAS  Google Scholar 

  51. Wu, K.-H., Huang, W.-C., Hung, W.-C., Tsai, C.-W.: Modified expanded graphite/Fe3O4 composite as an adsorbent of methylene blue: Adsorption kinetics and isotherms. Mater. Sci. Eng., B 266, 115068 (2021). https://doi.org/10.1016/j.mseb.2021.115068

    Article  CAS  Google Scholar 

  52. Zhan, J., Lei, Z., Zhang, Y.: Non-covalent interactions of graphene surface: Mechanisms and applications. Chem. 8, 947–979 (2022). https://doi.org/10.1016/j.chempr.2021.12.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was performed according to the Development program of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University «The future of the planet and global environmental change and State Program» of TIPS RAS.

Author information

Authors and Affiliations

Authors

Contributions

Andrei V. Ivanov: Synthesis, Conceptualization, Formal analysis, Writing—Original Draft. Daria A. Divitskaya: Investigation, Writing—Original Draft. Maksim A. Lavrin: Synthesis, Investigation. Alexei V. Kravtsov: Investigation, Data Curation, Formal analysis. Svetlana I. Volkova: Investigation. Natalia V. Maksimova: Methodology, Writing—Review & Editing. Igor L. Kalachev: Writing—Review & Editing. Alexey N. Kirichenko: Investigation, Formal analysis. Nikolai B. Rodionov: Investigation, Resources. Artem P. Malakho: Supervision, Validation, Resources. Victor V. Avdeev: Supervision, Resources.

Corresponding author

Correspondence to Andrei V. Ivanov.

Ethics declarations

Ethical approval

Not Applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.V., Divitskaya, D.A., Lavrin, M.A. et al. Exfoliated graphite for sorption of liquid hydrocarbons from the water surface: Effect of preparation conditions on sorption capacity and water wettability. Adsorption (2024). https://doi.org/10.1007/s10450-024-00475-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00475-6

Keywords

Navigation