Skip to main content
Log in

Photoenhanced Toxicity of Petroleum to Aquatic Invertebrates and Fish

  • Special Issue: Ocean Spills and Accidents
  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Photoenhanced toxicity is a distinct mechanism of petroleum toxicity that is mediated by the interaction of solar radiation with specific polycyclic aromatic compounds in oil. Phototoxicity is observed as a twofold to greater than 1000-fold increase in chemical toxicity to aquatic organisms that also have been exposed to light sources containing sufficient quantity and quality of ultraviolet radiation (UV). When tested under natural sunlight or laboratory sources of UV, fresh, and weathered middle distillates, crudes and heavy oils can exhibit photoenhanced toxicity. These same products do not exhibit phototoxicity in standard test protocols because of low UV irradiance in laboratory lighting. Fresh, estuarine, and marine waters have been shown to have sufficient solar radiation exposure to elicit photoenhanced toxicity, and a diversity of aquatic invertebrate and fish species can exhibit photoenhanced toxicity when exposed to combinations of oil and UV. Risks of photoenhanced toxicity will be greatest to early life stages of aquatic organisms that are translucent to UV and that inhabit the photic zone of the water column and intertidal areas exposed to oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Derived from Landrum et al. (1987), Choi and Oris (2003), and Diamond (2003); see text

Fig. 2

Modified from Barron (2007)

Similar content being viewed by others

References

  • Aeppli C, Carmichael CA, Nelson RK, Lemkau KL, Graham WM, Redmond MC, Valentine DL, Reddy CM (2012) Oil weathering after the deepwater horizon disaster led to the formation of oxygenated residues. Environ Sci Technol 46:8799–8807

    Article  CAS  Google Scholar 

  • Alloy MM, Boube I, Griffitt RJ, Oris JT, Roberts AP (2015) Photo-induced toxicity of deepwater horizon slick oil to blue crab (Callinectes sapidus) larvae. Environ Toxicol Chem 34:2061–2066

    Article  CAS  Google Scholar 

  • Alloy M, Baxter D, Stieglitz J, Mager E, Hoenig R, Benetti D, Grosell M, Oris J, Roberts A (2016) Ultraviolet radiation enhances the toxicity of deepwater horizon oil to mahi-mahi (Coryphaena hippurus) embryos. Environ Sci Technol 50:2011–2017

    Article  CAS  Google Scholar 

  • Ankley GT, Erickson RJ, Sheedy BR, Kosian PA, Mattson VR, Cox JS (1997) Evaluation of models for predicting the phototoxic potency of polycyclic aromatic hydrocarbons. Aquat Toxicol 37:37–50

    Article  CAS  Google Scholar 

  • Barron MG (2007) Sediment-associated phototoxicity to aquatic organisms. Hum Ecol Risk Assess 13:317–321

    Article  CAS  Google Scholar 

  • Barron MG, Ka’aihue L (2001) Potential for photoenhanced toxicity of spilled oil in Prince William Sound and Gulf of Alaska waters. Mar Pollut Bull 43:86–92

    Article  CAS  Google Scholar 

  • Barron MG, Ka’aihue L (2003) Critical evaluation of CROSERF test methods for oil dispersant toxicity testing under subarctic conditions. Mar Pollut Bull 46:1191–1199

    Article  CAS  Google Scholar 

  • Barron MG, Little EE, Calfee RD, Diamond S (2000) Quantifying solar spectral irradiance in aquatic habitats for the assessment of photoenhanced toxicity. Environ Toxicol Chem 19:920–925

    Article  CAS  Google Scholar 

  • Barron MG, Carls MG, Short JW, Rice SD (2003) Photoenhanced toxicity of aqueous phase and chemically dispersed weathered Alaska North Slope crude oil to Pacific herring eggs and larvae. Environ Toxicol Chem 22:650–660

    Article  CAS  Google Scholar 

  • Barron MG, Carls MG, Short JW, Heintz R, Rice SD (2005) Assessment of the phototoxicity of weathered Alaska North Slope crude oil to juvenile pink salmon. Chemosphere 60:105–110

    Article  CAS  Google Scholar 

  • Barron MG, Vivian D, Yee Diamond S (2008) Temporal and spatial variation in solar radiation and photoenhanced toxicity risks of spilled oil in Prince William Sound, Alaska. Environ Toxicol Chem 27:227–236

    Google Scholar 

  • Boese BL, Lamberson JO, Swartz RC, Ozretich RJ (1997) Photoinduced toxicity of fluoranthene to seven marine benthic crustaceans. Arch Environ Contam Toxicol 32:389–393

    Article  CAS  Google Scholar 

  • Calfee RD, Little EE, Cleveland L, Barron MG (1999) Photoenhanced toxicity of a weathered oil to Ceriodaphnia dubia reproduction. Environ Sci Pollut Res 6:207–212

    Article  CAS  Google Scholar 

  • Carriger J, Barron MG (2011) Minimizing risks from spilled oil to ecosystem services using influence diagrams: the deepwater horizon spill response. Environ Sci Technol 45:7631–7639

    Article  CAS  Google Scholar 

  • Choi J, Oris JT (2003) Assessment of the toxicity of anthracene photo-modification products using the topminnow (Poecilopsis lucida) hepatoma cell line (PLHC-1). Aquat Toxicol 65:243–251

    Article  CAS  Google Scholar 

  • Cleveland L, Little EE, Calfee RD, Barron MG (2000) Photoenhanced toxicity of a weathered oil to Mysidopsis bahia. Aquat Toxicol 49:63–76

    Article  CAS  Google Scholar 

  • Diamond SA (2003) Photoactivated toxicity in aquatic environments. In: Helbling EW, Zagarese H (eds) UV effects in aquatic organisms and ecosystems. The Royal Society of Chemistry, Cambridge, pp 219–250

    Chapter  Google Scholar 

  • Duesterloh S, Short J, Barron MG (2002) Photoenhanced toxicity of weathered Alaska North Slope crude oil to two species of marine calanoid zooplankton. Environ Sci Technol 36:3953–3959

    Article  CAS  Google Scholar 

  • Farwell AJ, Nero V, Croft M, Rhodes S, Dixon DG (2006) Phototoxicity of oil sands—derived polycyclic aromatic compounds to Japanese medaka (Oryzias latipes) embryos. Environ Toxicol Chem 25:3266–3274

    Article  CAS  Google Scholar 

  • Finch BE (2015) Photo-enhanced toxicity of oil constituents and Corexit 9500 to Gulf of Mexico marine organisms. Dissertation, Oregon State University Libraries

  • Giesy JP, Newsted JL, Oris JT (2013) Photoenhanced toxicity: serendipity of a prepared mind and flexible program management. Environ Toxicol Chem 32:969–971

    Article  CAS  Google Scholar 

  • Hatlen K, Sloan CA, Burrows DG, Collier TK, Scholz NL, Incardona JP (2010) Natural sunlight and residual fuel oils are an acutely lethal combination for fish embryos. Aquat Toxicol 99:56–64

    Article  CAS  Google Scholar 

  • Ho KT, Patton L, Latimer JS, Pruell RJ, Pelletier M, McKinney R, Jayaraman S (1999) The chemistry and toxicity of sediment impacted by the North Cape Oil Spill in Rhode Island Sound. Mar Pollut Bull 38:314–323

    Article  CAS  Google Scholar 

  • Hunter JR, Kaupp SE, Taylor JH (1980) Assessment of effects of UV radiation on marine fish larvae. In: Calkins J (ed) The role of solar radiation in marine ecosystems. Plenum Press, New York, pp 459–493

    Google Scholar 

  • Incardona JP, Vines CA, Linbo TL, Myers MS, Sloan CA, Anulacion BF, Boyd D, Collier TK, Morgan S, Cherr GN, Scholz NL (2012) Phototoxicity of marine bunker oil to translucent herring embryos after prolonged weathering. PLoS ONE 7:e30116

    Article  CAS  Google Scholar 

  • Kirby MF, Lyons BP, Barry J, Law RJ (2007) The toxicological impacts of oil and chemically dispersed oil: UV mediated phototoxicity and implications for environmental effects, statutory testing and response strategies. Mar Pollut Bull 54:472–475

    Article  CAS  Google Scholar 

  • Knecht AL, Goodale BC, Truong L, Simonich MT, Swanson AJ, Matzke MM, Anderson KA, Waters KM, Tanguay RL (2013) Comparative developmental toxicity of environmentally relevant oxygenated PAHs. Toxicol Appl Pharm 271:266–275

    Article  CAS  Google Scholar 

  • Kochevar IE, Armstrong RB, Einbinder J, Walther RR, Harber LC (1982) Coal tar phototoxicity: active compounds and action spectra. Photochem Photobiol 36:65–69

    Article  CAS  Google Scholar 

  • Kosian P, Makynen EA, Monson PD, Mount DR, Spacie A, Mekenyan OG, Ankley GT (1998) Application of toxicity-based fractionation techniques and structure-activity relationship models for the identification of phototoxic polycyclic aromatic hydrocarbons in sediment pore water. Environ Toxicol Chem 17:1021–1033

    CAS  Google Scholar 

  • Lampi MA, Gurska J, McDonald KI, Xie F, Huang XD, Dixon DG, Greenberg BM (2006) Photoinduced toxicity of polycyclic aromatic hydrocarbons to Daphnia magna: ultraviolet-mediated effects and the toxicity of polycyclic aromatic hydrocarbon photoproducts. Environ Toxicol Chem 25:1079–1087

    Article  CAS  Google Scholar 

  • Landrum PF, Giesy JP, Oris JT, Allred PM (1987) Photoinduced toxicity of polycyclic aromatic hydrocarbons to aquatic organisms. In: Vandermeulen JH, Hrudey SE (eds) Oil in freshwater. Pergamon Press, New York, pp 304–318

    Google Scholar 

  • Lee RF (2003) Photo-oxidation and photo-toxicity of crude and refined oils. Spill Sci Technol Bull 8:157–162

    Article  CAS  Google Scholar 

  • Lee C-H, Sung C-G, Kang S-K, Moon S-D, Le J-H, Lee J-H (2013) Effects of ultraviolet radiation on the toxicity of water-accommodated fraction and chemically enhanced water-accommodated fraction of Hebei Spirit crude oil to the embryonic development of the Manila clam, Ruditapes philippinarum. Korean J Malcol 29:23–32

    Article  Google Scholar 

  • Little EE, Cleveland L, Calfee R, Barron MG (2000) Assessment of the photoenhanced toxicity of a weathered oil to the tidewater silverside. Environ Toxicol Chem 19:926–932

    Article  CAS  Google Scholar 

  • McConkey BJ, Hewitt LM, Dixon DG, Greenberg BM (2002) Natural sunlight induced photooxidation of naphthalene in aqueous solution. Water Air Soil Pollut 136:347–359

    Article  CAS  Google Scholar 

  • Pelletier MC, Burgess RM, Ho KT, Kuhn A, McKinney RA, Ryba SA (1997) Phototoxicity of individual polycyclic aromatic hydrocarbons and petroleum to marine invertebrate larvae and juveniles. Environ Toxicol Chem 16:2190–2199

    Article  CAS  Google Scholar 

  • Saco-Álvarez L, Bellas J, Nieto O, Bayona JM, Albaigés J, Beiras R (2008) Toxicity and phototoxicity of water-accommodated fraction obtained from Prestige fuel oil and Marine fuel oil evaluated by marine bioassays. Sci Total Environ 394:275–282

    Article  Google Scholar 

  • Spehar RL, Poucher S, Brooke LT, Hansen DJ, Champlin D, Cox DA (1999) Comparative toxicity of fluoranthene to freshwater and saltwater species under fluorescent and ultraviolet light. Arch Environ Contam Toxicol 37:496–502

    Article  CAS  Google Scholar 

  • Spielmanna H, Ballsb M, Dupuisc J, Paped WJ, Pechovitche G, de Silvaf O, Holzhütterg H-G, Clothierh R, Desollef P, Gerbericki F, Liebscha M, Lovella WW, Maurerg T, Pfannenbeckerd U, Potthastl JM, Csatol M, Sladowskim D, Steilingn W, Brantomo P (1998) The international EU/COLIPA in vitro phototoxicity validation study: results of phase II (blind trial). Part 1: the 3T3 NRU phototoxicity test. Toxicol In Vitr 12:305–327

    Article  Google Scholar 

  • Toyooka T, Ibuki Y (2006) New method for testing phototoxicity of polycyclic aromatic hydrocarbons. Environm Sci Technol 40(11):3603–3608

    Article  CAS  Google Scholar 

  • Veith GD, Mekenyan OG, Ankley GT, Call DJ (1995) A QSAR analysis of substituent effects on the photoinduced acute toxicity of PAHs. Chemosphere 30:2129–2142

    Article  CAS  Google Scholar 

  • Wernersson AS (2003) Predicting petroleum phototoxicity. Ecotoxicol Environ Saf 54:355–365

    Article  CAS  Google Scholar 

  • Wiegman S, van Vlaardingen PLA, Bleeker EAJ, de Voogt P, Kraak MHS (2001) Phototoxicity of azaarene isomers to the marine flagellate Dunaliella tertiolecta. Environ Toxicol Chem 20:1544–1550

    Article  CAS  Google Scholar 

  • Willis AM, Oris JT (2014) Acute photo-induced toxicity and toxicokinetics of single compounds and mixtures of polycyclic aromatic hydrocarbons in zebrafish. Environ Toxicol Chem 33:2028–2037

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Mike Lewis, Jill Awkerman, and Susan Yee for review of a draft of the manuscript, Lee Courtney for the base Fig. 2 graphic, and many colleagues who have contributed to the knowledgebase of the photoenhanced toxicology of petroleum, especially Steve Diamond for introduction to the field of phototoxicity and many fruitful discussions over the years. The conclusions may not necessarily reflect the views of the EPA, and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mace G. Barron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barron, M.G. Photoenhanced Toxicity of Petroleum to Aquatic Invertebrates and Fish. Arch Environ Contam Toxicol 73, 40–46 (2017). https://doi.org/10.1007/s00244-016-0360-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-016-0360-y

Navigation