Skip to main content

Advertisement

Log in

Preparation of eco-friendly mesoporous expanded graphite for oil sorption

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Due to its unique properties, expanded graphite (EG) is a promising material that could be used in various applications. Traditional EG production methods had numerous problems in terms of saving energy and reducing pollution. This article provides an efficient and energy-conserving preparation process to obtain EG, in which flake graphite is intercalated and expanded at room temperature. The flake graphite was expanded using a simple and effective method in which graphite intercalation and expansion are accomplished using a binary system of concentrated sulfuric acid (H2SO4) and inorganic salts, specifically sodium peroxydisulfate (Na2S2O8). The optimal conditions were at room temperature, with a mass fraction of 14% of graphite to Na2S2O8 and a mass fraction of 5% of graphite to H2SO4. This gave a maximum expanded volume of 140 mL/g. XRD, SEM, FT-IR, and Raman spectroscopy were used to characterize the expanded graphite's microstructures, morphology, and functional groups. After being expanded, the flake graphite transformed into a worm-like structure, and the graphite sheets were only slightly damaged. When used as an oil sorbent, EG has a high capacity to absorb oil and can quickly and effectively absorb oil from water.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.Z. Iqbal, A.A. Abdala, Oil spill cleanup using graphene. Environ Sci Pollut Res 20, 3271–3279 (2013). https://doi.org/10.1007/s11356-012-1257-6

    Article  CAS  Google Scholar 

  2. P.T. Van, T.T. Nguyen, D.T. Nguyen et al., The preparation and characterization of expanded graphite via microwave irradiation and conventional heating for the purification of oil contaminated water. J Nanosci Nanotechnol 19, 1122–1125 (2019). https://doi.org/10.1166/jnn.2019.15926

    Article  CAS  Google Scholar 

  3. B. Singh, S. Kumar, B. Kishore, T.N. Narayanan, Magnetic scaffolds in oil spill applications. Environ Sci Water Res Technol 6, 436–463 (2020). https://doi.org/10.1039/c9ew00697d

    Article  CAS  Google Scholar 

  4. K.H. Wu, W.C. Huang, W.C. Hung, C.W. Tsai, Sorption and regeneration of expanded graphite/Fe3O4 composite for removal of oil pollution from the water. Mater Express 11, 579–585 (2021). https://doi.org/10.1166/mex.2021.1955

    Article  CAS  Google Scholar 

  5. M. Elbidi, A. Hewas, R. Asar, M.A.M. Salleh, comparative study between activated carbon and biochar for phenol removal from aqueous solution. BioResources 16, 6781–6790 (2021). https://doi.org/10.15376/biores.16.4.6781-6790

    Article  CAS  Google Scholar 

  6. N. Sykam, K.K. Kar, Rapid synthesis of exfoliated graphite by microwave irradiation and oil sorption studies. Mater Lett 117, 150–152 (2014). https://doi.org/10.1016/j.matlet.2013.12.003

    Article  CAS  Google Scholar 

  7. M. Toyoda, M. Inagaki, Heavy oil sorption using exfoliated graphite new application of exfoliated graphite to protect heavy oil pollution. Carbon N Y 38, 199–210 (2000). https://doi.org/10.1016/S0008-6223(99)00174-8

    Article  CAS  Google Scholar 

  8. M.S. Dresselhaus, G. Dresselhaus, Intercalation compounds of graphite. Adv Phys 51, 1–186 (1981). https://doi.org/10.1080/00018738100101367

    Article  Google Scholar 

  9. R. Goudarzi, G. Hashemi Motlagh, The effect of graphite intercalated compound particle size and exfoliation temperature on porosity and macromolecular diffusion in expanded graphite. Heliyon 5, e02595 (2019). https://doi.org/10.1016/j.heliyon.2019.e02595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A.J. Jacobson, L.F. Nazar, Intercalation chemistry. Encycl Inorg Bioinorg Chem (2011). https://doi.org/10.1002/9781119951438.eibc0093

    Article  Google Scholar 

  11. Y. Chang, X. Sun, M. Ma et al., Application of hard ceramic materials B4C in energy storage: design B4C@C core-shell nanoparticles as electrodes for flexible all-solid-state micro-supercapacitors with ultrahigh cyclability. Nano Energy 75, 104947 (2020). https://doi.org/10.1016/j.nanoen.2020.104947

    Article  CAS  Google Scholar 

  12. P. Murugan, R.D. Nagarajan, B.H. Shetty et al., Recent trends in the applications of thermally expanded graphite for energy storage and sensors: a review. Nanoscale Adv 3, 6294–6309 (2021). https://doi.org/10.1039/d1na00109d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A.D. Lucking, L. Pan, D.L. Narayanan, C.E.B. Clifford, Effect of expanded graphite lattice in exfoliated graphite nanofibers on hydrogen storage. J Phys Chem B 109, 12710–12717 (2005). https://doi.org/10.1021/jp0512199

    Article  CAS  Google Scholar 

  14. A. Bhattacharya, A. Hazra, S. Chatterjee et al., Expanded graphite as an electrode material for an alcohol fuel cell. J Power Sources 136, 208–210 (2004). https://doi.org/10.1016/j.jpowsour.2004.03.003

    Article  CAS  Google Scholar 

  15. H.S. Han, J. You, H. Seol et al., Electrochemical sensor for hydroquinone and catechol based on electrochemically reduced GO–terthiophene–CNT. Sensors Actuators B Chem 194, 460–469 (2014). https://doi.org/10.1016/j.snb.2014.01.006

    Article  CAS  Google Scholar 

  16. W. Li, C. Han, W. Liu et al., Expanded graphite applied in the catalytic process as a catalyst support. Catal Today 125, 278–281 (2007). https://doi.org/10.1016/j.cattod.2007.01.035

    Article  CAS  Google Scholar 

  17. F. Chen, W. Gao, X. Qiu et al., Graphene quantum dots in biomedical applications: recent advances and future challenges. Front Lab Med 1, 192–199 (2018). https://doi.org/10.1016/j.flm.2017.12.006

    Article  Google Scholar 

  18. Y. Yang, A.M. Asiri, Z. Tang et al., Graphene based materials for biomedical applications. Mater Today 16, 365–373 (2013). https://doi.org/10.1016/j.mattod.2013.09.004

    Article  CAS  Google Scholar 

  19. M. Zhao, P. Liu, Adsorption of methylene blue from aqueous solutions by modified expanded graphite powder. Desalination 249, 331–336 (2009). https://doi.org/10.1016/j.desal.2009.01.037

    Article  CAS  Google Scholar 

  20. J. Cao, P. He, M.A. Mohammed et al., Two-step electrochemical intercalation and oxidation of graphite for the mass production of graphene oxide. J Am Chem Soc 139, 17446–17456 (2017). https://doi.org/10.1021/jacs.7b08515

    Article  CAS  PubMed  Google Scholar 

  21. A.M. Dimiev, S.M. Bachilo, R. Saito, J.M. Tour, Reversible formation of ammonium persulfate/sulfuric acid graphite intercalation compounds and their peculiar Raman spectra. ACS Nano 6, 7842–7849 (2012). https://doi.org/10.1021/nn3020147

    Article  CAS  PubMed  Google Scholar 

  22. H.M.A. Asghar, S.N. Hussain, H. Sattar et al., Environmentally friendly preparation of exfoliated graphite. J Ind Eng Chem 20, 1936–1941 (2014). https://doi.org/10.1016/j.jiec.2013.09.014

    Article  CAS  Google Scholar 

  23. T. Zhou, F. Zhang, H. Liu et al., Microwave-assisted preparation of boron acid modified expanded graphite for the determination of chloramphenicol in egg samples. J Chromatogr A 1565, 29–35 (2018). https://doi.org/10.1016/j.chroma.2018.06.032

    Article  CAS  PubMed  Google Scholar 

  24. Z.X. Liu, X.W. Zhang, W.J. Zhang et al., Microwave-assisted fabrication of slight-expanded graphite under normal temperature. Mater Sci Technol 36, 251–254 (2020). https://doi.org/10.1080/02670836.2019.1693730

    Article  CAS  Google Scholar 

  25. T. Yao, Y. Zhang, Y. Xiao et al., The effect of environmental factors on the adsorption of lubricating oil onto expanded graphite. J Mol Liq 218, 611–614 (2016). https://doi.org/10.1016/j.molliq.2016.02.050

    Article  CAS  Google Scholar 

  26. F. Zhang, Q. Zhao, X. Yan et al., Rapid preparation of expanded graphite by microwave irradiation for the extraction of triazine herbicides in milk samples. Food Chem 197, 943–949 (2015). https://doi.org/10.1016/j.foodchem.2015.11.056

    Article  CAS  PubMed  Google Scholar 

  27. T. Liu, R. Zhang, X. Zhang et al., One-step room-temperature preparation of expanded graphite. Carbon N Y 119, 544–547 (2017). https://doi.org/10.1016/j.carbon.2017.04.076

    Article  CAS  Google Scholar 

  28. M.J. Mcallister, J. Li, D.H. Adamson et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Am Chem Soc (2007). https://doi.org/10.1021/cm0630800

    Article  Google Scholar 

  29. S. Stankovich, D.A. Dikin, G.H.B. Dommett et al., Graphene-based composite materials. Nature 442, 282–286 (2006). https://doi.org/10.1038/nature04969

    Article  CAS  PubMed  Google Scholar 

  30. X.H. Wei, L. Liu, J.X. Zhang et al., HClO4-graphite intercalation compound and its thermally exfoliated graphite. Mater Lett 63, 1618–1620 (2009). https://doi.org/10.1016/j.matlet.2009.04.030

    Article  CAS  Google Scholar 

  31. N. Sykam, N.D. Jayram, G.M. Rao, Highly efficient removal of toxic organic dyes, chemical solvents and oils by mesoporous exfoliated graphite: synthesis and mechanism. J Water Process Eng 25, 128–137 (2018). https://doi.org/10.1016/j.jwpe.2018.05.013

    Article  Google Scholar 

  32. S. Hou, S. He, T. Zhu et al., Environment-friendly preparation of exfoliated graphite and functional graphite sheets. J Mater 7, 136–145 (2021). https://doi.org/10.1016/j.jmat.2020.06.009

    Article  Google Scholar 

  33. S. Lin, L. Dong, J. Zhang, H. Lu, Room-temperature intercalation and ∼1000-fold chemical expansion for scalable preparation of high-quality graphene. Chem Mater 28, 2138–2146 (2016). https://doi.org/10.1021/acs.chemmater.5b05043

    Article  CAS  Google Scholar 

  34. K. Parvez, Z.S. Wu, R. Li et al., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136, 6083–6091 (2014). https://doi.org/10.1021/ja5017156

    Article  CAS  PubMed  Google Scholar 

  35. X.H. Wei, L. Liu, J. Xi et al., The preparation and morphology characteristics of exfoliated graphite derived from HClO4–graphite intercalation compounds. Mater Lett 64, 1007–1009 (2010). https://doi.org/10.1016/j.matlet.2009.11.025

    Article  CAS  Google Scholar 

  36. Block PA, Brown RA, Robinson D (2004) Novel activation technologies for sodium persulfate in situ chemical oxidation. B: In Proceedings of the fourth international conference on the remediation of chlorinated and recalcitrant compounds. Battelle Press, Columbus, OH, pp 24–27

  37. C.J. Bruell, C.J. Liang, M.C. Marley, K.L. Sperry, Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil Sediment Contam 12, 207–228 (2003). https://doi.org/10.1080/713610970

    Article  Google Scholar 

  38. J. He, L. Song, H. Yang et al., Preparation of sulfur-free exfoliated graphite by a two-step intercalation process and its application for adsorption of oils. J Chem (2017). https://doi.org/10.1155/2017/5824976

    Article  Google Scholar 

  39. Gulnura N, Kenes K, Yerdos O, et al (2018) Preparation of expanded graphite using a thermal method. B: In: IOP conference series: materials science and engineering, c 012012

  40. T. Wei, Z. Fan, G. Luo et al., A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon N Y 47, 337–339 (2008). https://doi.org/10.1016/j.carbon.2008.10.013

    Article  CAS  Google Scholar 

  41. A. Trivedi, N. Pisharath, B.T.S. Ramanujam, Effect of oxidizing agents on the expansion characteristics of natural graphite. Mater Today Proc 5, 16695–16702 (2018). https://doi.org/10.1016/j.matpr.2018.06.033

    Article  CAS  Google Scholar 

  42. C. Dai, C. Gu, B. Liu et al., Preparation of low-temperature expandable graphite as a novel steam plugging agent in heavy oil reservoirs. J Mol Liq 293, 111535 (2019). https://doi.org/10.1016/j.molliq.2019.111535

    Article  CAS  Google Scholar 

  43. D.C. Marcano, D.V. Kosynkin, J.M. Berlin et al., Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010). https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  44. S.R. Dhakate, R.B. Mathur, S. Sharma et al., Influence of expanded graphite particle size on the properties of composite bipolar plates for fuel cell application. Energy Fuels 23, 934–941 (2009). https://doi.org/10.1021/ef800744m

    Article  CAS  Google Scholar 

  45. B. Hou, H.J. Sun, T.J. Peng et al., Rapid preparation of expanded graphite at low temperature. Xinxing Tan Cailiao/New Carbon Mater 35, 262–268 (2020). https://doi.org/10.1016/S1872-5805(20)60488-7

    Article  CAS  Google Scholar 

  46. L.K. Wu, K.Y. Chen, S.Y. Cheng et al., Thermal decomposition of hydrogen peroxide in the presence of sulfuric acid. J Therm Anal Calorim 93, 115–120 (2008). https://doi.org/10.1007/s10973-007-8829-6

    Article  CAS  Google Scholar 

  47. I.M. Kolthoff, I.K. Miller, The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. J Am Chem Soc 73, 3055–3059 (1951). https://doi.org/10.1021/ja01151a024

    Article  CAS  Google Scholar 

  48. R.P. Ren, Z. Wang, J. Ren, Y.K. Lv, Highly compressible polyimide/graphene aerogel for efficient oil/water separation. J Mater Sci 54, 5918–5926 (2019). https://doi.org/10.1007/s10853-018-03238-1

    Article  CAS  Google Scholar 

  49. A. Mulyadi, Z. Zhang, Y. Deng, Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl Mater Interfaces 8, 2732–2740 (2016). https://doi.org/10.1021/acsami.5b10985

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Designing, carrying out and writing original draft, ME; review and editing MAMS and MFMGR; conceptualization and supervision SAR, and MFMGR. All authors have read and agreed to be published version of the manuscript.

Corresponding author

Correspondence to Mohamad Amran Mohd Salleh.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbidi, M., Resul, M.F.M.G., Rashid, S.A. et al. Preparation of eco-friendly mesoporous expanded graphite for oil sorption. J Porous Mater 30, 1359–1368 (2023). https://doi.org/10.1007/s10934-023-01428-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01428-0

Keywords

Navigation