Skip to main content
Log in

Adsorption techniques for decontaminating liquid radioactive waste and radionuclide-contaminated natural water

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The paper reviews the adsorption methods used for decontaminating liquid radioactive waste (LRW) and radioactive-contaminated natural water of different origins from radionuclides. The primary attention is paid to the sorption of long-lived cesium and strontium radionuclides, which, besides the high radiotoxicity, in most cases define the overall activity of radioactive waste. A standard technique was developed for evaluating the efficiency of various sorption materials in relation to cesium and strontium radionuclides by determining the distribution coefficient (Kd) values of tracer 137Cs and 90Sr radionuclides in solutions of sodium and calcium salts, the essential bulk components of LRW, and natural water. The results showed that natural aluminosilicate sorbents, zeolites, zirconium phosphate, and ferrocyanide sorbents could effectively remove 137Cs from low-salt solutions. The sorbent based on manganese (III, IV) oxyhydrate exhibited the highest selectivity to strontium. A correlation between the crystalline and porous structure of the sorbents and the selectivity to cesium and strontium radionuclides was shown. The results obtained provide an adequate choice of the most effective sorbents for the decontamination of radioactively contaminated natural water and technogenic liquid waste from cesium and strontium radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbasi, W.A., Streat, M.: Adsorption of uranium from aqueous solutions using activated carbon. Sep. Sci. Technol. 29, 1217–1230 (1994)

    Article  CAS  Google Scholar 

  2. Abdel-Rahman, R.O., Ibrahim, H.A., Hanafy, M., Abdel-Monem, N.M.: Assessment of synthetic zeolite NaA-X as sorbing barrier for strontium in a radioactive disposal facility. Chem. Eng. J. 157, 100–112 (2010)

    Article  CAS  Google Scholar 

  3. Abdel-Rahman, R.O., Ibrahium, H.A., Hung, Y.-T.: Liquid radioactive wastes treatment: a review. Water 3, 551–565 (2011). https://doi.org/10.3390/w3020551

    Article  Google Scholar 

  4. Andryushchenko, N.D., Safonov, A.V., Babich, T.L., Ivanov, P.V., Konevnik, Y.V., Kondrashova, A.A., Proshin, I.M., Zakharova, E.V.: Sorption characteristics of materials of the filtration barrier in upper aquifers contaminated with radionuclides. Radiochemistry 59, 414–424 (2017)

    Article  CAS  Google Scholar 

  5. Avramenko, V.A., Sergienko, V.I., Sokol’nitskaya, T.A.: Application of sorption-reagent materials in the technology of liquid radioactive waste treatment. Theor. Found. Chem. Eng. 50(4), 593–597 (2016). https://doi.org/10.1134/S0040579516040035

    Article  CAS  Google Scholar 

  6. Avramenko, V.A., Zheleznov, V.V., Kaplun, E.V., Sokol’nitskaya, T.A., Yukhkam, A.A.: Sorption recovery of strontium from seawater. Radiochemistry 43(4), 433–436 (2001)

    Article  CAS  Google Scholar 

  7. Borai, E.H., Hilal, M.A., Attallah, M.F., Shehata, F.A.: Improvement of radioactive liquid waste treatment efficiency by sequential cationic and anionic ion exchangers. Radiochim. Acta 96, 441–447 (2008)

    Article  CAS  Google Scholar 

  8. Borai, E.H., Harjula, R., Paajanen, A.: Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J. Hazard. Mater. 172, 416–422 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. Bulut, Y., Tez, Z.: Removal of heavy metals from aqueous solution by sawdust adsorption. J. Environ. Sci. 19(2), 160–166 (2007)

    Article  CAS  Google Scholar 

  10. Chaptman, D.M., Roe, A.L.: Synthesis, characterization and crystal chemistry of microporous titanium-silicate materials. Zeolites 10, 730–737 (1990)

    Article  Google Scholar 

  11. Cheira, M.F., Atia, B.M., Kouraim, M.N.: Uranium(VI) recovery from acidic leach liquor by Ambersep 920U SO4 resin: kinetic, equilibrium and thermodynamic studies. J. Radiat. Res. Appl. Sci. 10, 307–319 (2017). https://doi.org/10.1016/j.jrras.2017.07.005

    Article  CAS  Google Scholar 

  12. Cornell, R.M.: Adsorption of cesium on minerals: a review. J. Radioanal. Nucl. Chem. 171(2), 483–500 (1993)

    Article  CAS  Google Scholar 

  13. Decaillon, J.G., Andres, Y., Mokili, B.M., Abbe, J.C., Tournoux, M., Patarin, J.: Study of the ion exchange selectivity of layered titanosilicate Na3(Na, H)Ti2O2[Si2O6]2×2H2O, AM-4, for strontium. Solvent Extr. Ion Exch. 20, 273–291 (2002)

    Article  CAS  Google Scholar 

  14. Duff, M.C., Hanter, D.B., Hobbs, D.T., Fink, S.D., Dai, Z.: Bradey JP Mechanism of strontium and uranium removal from high-level radioactive waste simulant solution by the sorbent monosodium titanate. Environ. Sci. Technol. 38, 5201–5207 (2007)

    Article  Google Scholar 

  15. Feng, Q., Kanoh, H., Ooi, K.: Manganese oxide porous crystals. J. Mater. Chem. 9, 319–333 (1999)

    Article  CAS  Google Scholar 

  16. Ferrah, N., Abderrahim, O., Didi, M.A.: Comparative study of Cd2+ ions sorption by both Lewatit TP 214 and Lewatit TP 208 resins: kinetic, equilibrium and thermodynamic modelling. Chem. J. 5(1), 6–13 (2015)

    CAS  Google Scholar 

  17. Fuks, L., Herdzik-Koniecko, I.: Vermiculite as a potential component of the engineered barriers in low- and medium-level radioactive waste repositories. Appl Clay Sci. 161, 139–150 (2018)

    Article  CAS  Google Scholar 

  18. Hartmann, E., et al.: Sorption of radionuclides onto natural clay rocks. Radiochim. Acta. 96(9–11), 699–707 (2008)

    Article  CAS  Google Scholar 

  19. Hassan, N.M., Adu-Wusu, K., Marra, J.C.: Resorcinol—formaldehyde adsorption of cesium from Hanford waste solutions. J. Radioanal. Nucl. Chem. 262(3), 579–586 (2005)

    Article  Google Scholar 

  20. Hobbs, D.T., et al.: Strontium and actinide separations from high level nuclear waste solutions using monosodium titanate. 1. Simulant testing. Sep. Sci. Technol. 40, 3093–3111 (2005)

    Article  CAS  Google Scholar 

  21. Hua, M., Zhang, Sh., Pan, B., Zhang, W., Lv, L., Zhang, Q.: Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J. Hazard. Mater. 211–212, 317–331 (2012)

    Article  PubMed  Google Scholar 

  22. IAEA: Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers. Technical Reports Series. No. 408. IAEA, Vienna (2002)

  23. IAEA: The Fukushima Daiichi Accident, STI/PUB/1710. Report by the Director General. IAEA, Vienna (2015)

  24. Ivanets, A., Milyutin, V., Shashkova, I., Kitikova, N., Nekrasova, N., Radkevich, A.: Sorption of stable and radioactive Cs(I), Sr(II), Co(II) ions on Ti–Ca–Mg phosphates. J. Radioanal. Nucl. Chem. 324, 1115–1123 (2020). https://doi.org/10.1007/s10967-020-07140-6

    Article  CAS  Google Scholar 

  25. Kadous, A., Didi, M.A., Villemin, D.: Removal of uranium (VI) from acetate medium using Lewatit TP 260 resin. J. Radioanal. Nucl. Chem. 288, 553–561 (2020). https://doi.org/10.1007/s10967-010-0970-1

    Article  CAS  Google Scholar 

  26. Kosari, M., Sepehrian, H., Ahangari, R.: Uranium removal from aqueous solution using ion-exchange resin DOWEX 2x8 in the presence of sulfate anions. Int. J. Eng. 29(12), 1677–1683 (2016). https://doi.org/10.5829/idosi.ije.2016.29.12c.06

    Article  CAS  Google Scholar 

  27. Kutahyali, C., Eral, M.: Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Sep. Purif. Technol. 40(2), 109–114 (2004). https://doi.org/10.1016/j.seppur.2004.01.011

    Article  CAS  Google Scholar 

  28. Kuznetsova, V.A., Generalova, V.A.: The study of sorption properties of iron, manganese, titanium, aluminum and silicone oxides with respect to 90Sr and 137Cs. Radiochemistry 42, 154–157 (2000)

    Google Scholar 

  29. Lee, J., et al.: Selective and irreversible adsorption mechanism of cesium on illite. Appl. Geochem. 85, 188–193 (2017)

    Article  CAS  Google Scholar 

  30. Lehto, J., Brodkin, L., Harjula, R., Tusa, E.: Separation of radioactive strontium from alkaline nuclear waste solutions with the highly effective ion exchanger SrTreat. Nucl. Technol. 127, 81–87 (1999)

    Article  CAS  Google Scholar 

  31. Leontieva, G.V.: Structural modification of manganese (III, IV) oxides in synthesis of sorbents selective for strontium. Russ. J. Appl. Chem. 70, 1615–1618 (1997)

    Google Scholar 

  32. Liu, H.D., Li, F.Z., Zhao, X., Yun, G.C.: Preparing high-loaded potassium cobalt hexacyanoferrate/silica composite for radioactive wastewater treatment. Nucl. Technol. 165, 200–208 (2009)

    Article  CAS  Google Scholar 

  33. Lujaniene, G., Šapolaite, J., Radžiute, E., Ščiglo, T., Beneš, P., Štamberg, K., Vopalka, D.: Effect of natural clay components on sorption of Cs, Pu and Am by the clay. J. Radioanal. Nucl. Chem. 286, 353–359 (2010)

    Article  CAS  Google Scholar 

  34. Milan, M.: Ion Exchangers in Analytical Chemistry. Elsevier, Amsterdam (1982)

    Google Scholar 

  35. Maskalchuk, L.N., Milyutin, V.V., Nekrasova, N.A., Leontieva, T.G., Baklay, A.A., Belousov, P.E., Krupskaya, V.V.: Aluminosilicate sorbents based on clay–salt slimes from JSC «Belaruskali» for sorption of cesium and strontium radionuclides. Radiochemistry 62(3), 381–386 (2020). https://doi.org/10.1134/S1066362220030108

    Article  CAS  Google Scholar 

  36. Milonjic, I., Bispo, M., Fedoroff, C.V.: Sorption of cesium on cooper hexacyanoferrate/ polymer/silica composites in batch and dynamic conditions. J. Radioanal. Nucl. Chem. 252, 497–501 (2002)

    Article  Google Scholar 

  37. Milyutin, V.V., Kononenko, O.A., Mikheev, S.V., Gelis, V.M.: Sorption of cesium on finely dispersed composite ferrocyanide sorbents. Radiochemistry 52(3), 281–283 (2010)

    Article  CAS  Google Scholar 

  38. Milyutin, V.V., Gelis, V.M., Leonov, N.B.: Kinetic sorption studies of cesium and strontium radionuclides by the sorbents of different classes. Radiochemistry 40(5), 418–420 (1998). ((in Russian))

    Google Scholar 

  39. Milyutin, V.V., Gelis, V.M., Nekrasova, N.A., Kononenko, O.A., Vezentsev, A.I., Volovicheva, N.A., Korol’kova, S.V.: Sorption of Cs, Sr, U and Pu radionuclides on natural and modified clays. Radiochemistry 54, 75–78 (2012)

    Article  Google Scholar 

  40. Milyutin, V.V., Nekrasova, N.A., Yanicheva, N.Y., Kalashnikova, G.O., Ganicheva, Y.Y.: Sorption of cesium and strontium radionuclides onto crystalline alkali metal titanosilicates. Radiochemistry 59, 65–69 (2017). https://doi.org/10.1134/S1066362217010088S

    Article  CAS  Google Scholar 

  41. Misaelides, P.: Application of natural zeolites in environmental remediation: a short review. Microporous Mesoporous Mater. 144(1–3), 15–18 (2001)

    Google Scholar 

  42. Olorundare, O.F., Krause, R.W.M., Okonkwo, J.O., Mamba, B.B.: Potential application of activated carbon from maize tassel for the removal of heavy metals in water. J. Phys. Chem. Earth. 50–52, 104–110 (2012)

    Article  Google Scholar 

  43. Olphen, V.: Data Handbook for Clay Materials and Other Non-Metallic Minerals, vol. 28. Pergamon Press, Oxford (1979)

    Google Scholar 

  44. Osipov, V.I., Sokolov, V.N.: Sokolov, Clays and Their Properties. The Composition, Structure and Properties of the Formation. GEOS, Moscow (2013)

    Google Scholar 

  45. Osmanloglu, A.E.: Treatment of radioactive liquid waste for sorption on natural zeolite in Turkey. J. Hazard. Mater. 137, 332–335 (2009)

    Article  Google Scholar 

  46. Park, Y., Shin, W.S., Reddy, G.S., Shin, S.J., Choi, S.J.: Use of nanocrystalline silicotitanate for the removal of Cs, Co and Sr from low-level liquid radioactive waste. J. Nanoelectron. Optoelectron. 5, 238–242 (2010)

    Article  CAS  Google Scholar 

  47. Proceedings of an International Conference on Chernobyl (2005) International Conference on Chernobyl: Looking Back to Go Forward, Vienna, Austria, 6–7 September 2005

  48. Sergienko, V.I., Avramenko, V.A., Glushchenko, VYu.: Sorption technology of LRW treatment. J. Ecotechnol. Res. 1(2), 152 (1995)

    Google Scholar 

  49. Sharygin L.M.: Thermal Resistant Inorganic Sorbents. Ekaterinburg, UrO RAS (2012)

  50. Solbra, N., Allison, S., Waite, S., Mihalovsky, A., Bortun, L., Clearfield, A.: Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3SiO4×nH2O (M = H, Na). Environ. Sci. Technol. 35, 626–629 (2001)

    Article  CAS  PubMed  Google Scholar 

  51. Someda, H.H., Ezz El-Din, M.R., Sheha, R.R., El Naggar, H.A.: Application of a carbonized apricot stone for the treatment of some radioactive nuclei. J. Radioanal. Nucl. Chem. 254(2), 373–378 (2002)

    Article  CAS  Google Scholar 

  52. Sprynskyy, M., Kovalchuk, I., Buszewski, B.: The separation of uranium ions by natural and modified diatomite from aqueous solution. J. Hazard. Mater. 181, 700–707 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.069

    Article  CAS  PubMed  Google Scholar 

  53. Tananaev, I.V., Seifer, G.B., Kharitonov, YuYa., et al.: The Chemistry of Ferrocyanides. Nauka, Moscow (1971)

    Google Scholar 

  54. Thakkar, R., Chudasama, U.: Synthesis and characterization of zirconium titanium phosphate and its application in separation of metal ions. J. Hazard. Mater. 172, 129–137 (2009)

    Article  CAS  PubMed  Google Scholar 

  55. Valsala, T.P., Joseph, A., Sonar, N.L., Sonavane, M.S., Shah, J.G., Raj, K.A., Venugopal, V.: Separation of strontium from low level radioactive waste solutions using hydrous manganese dioxide composite materials. J. Nucl. Mat. 404, 138–143 (2010)

    Article  CAS  Google Scholar 

  56. Venkatesan, K.A., Shyamla, K.V., Antony, M.P., Srinivasan, T.G., Vasudeva, P.R.: Batch and dynamic extraction of uranium from nitric acid medium by commercial phosphonic acid resin Tulsion CH-96. J. Radioanal. Nucl. Chem. 275, 563–570 (2008). https://doi.org/10.1007/s10967-007-6888-6

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences. No specific funding or grant was received to assist in conducting this study and preparing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

VVM: the idea, supervision, conceptualization, methodology, data analysis, writing—original draft. NAN: investigation, literature search, data analysis, writing—original draft. VOK: investigation, literature search. EAK: resources, writing—review and editing.

Corresponding author

Correspondence to Evgeny A. Kozlitin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milyutin, V.V., Nekrasova, N.A., Kaptakov, V.O. et al. Adsorption techniques for decontaminating liquid radioactive waste and radionuclide-contaminated natural water. Adsorption 29, 323–334 (2023). https://doi.org/10.1007/s10450-023-00407-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-023-00407-w

Keywords

Navigation