Skip to main content
Log in

Pure and mixture adsorption equilibria of methane and nitrogen onto clinoptilolite: effects of Cs+ and Fe3+ exchanged cations on separation performance

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Cation exchanged clinoptilolite has emerged as an adsorbent that may be used for the treatment of natural gas type mixtures containing excess amounts of nitrogen. In this study, natural clinoptilolite was modified through Fe3+ and Cs+ cation exchange. The resultant mineral phase and elemental composition were verified and the extra framework cation type, charge, and distribution is shown to have a profound effect on the observed adsorptive properties. Single gas adsorption isotherms were conducted at 15 °C and/or 30 °C for CH4 and N2 using a microgravimetric adsorption analyser, and the ideal equimolar CH4/N2 selectivity values were determined for the natural and modified clinoptilolites. Natural clinoptilolite presents selectivity values close to 1. However, we demonstrate that clinoptilolite cation-exchanged with Cs+ and Fe3+ cations is rendered preferentially adsorptive for CH4 over N2 with a higher CH4/N2 selectivity than many adsorbents reported in the literature. The experimental CH4–N2 binary adsorption behavior was evaluated for the first time on raw clinoptilolite and was compared to the modified clinoptilolites with Cs+ and Fe3+ exchanged cations using the concentration pulse chromatographic technique. The experimental binary isotherms showed non-ideal behavior with competitive adsorption between CH4 and N2. In most cases, the theoretical models could not adequately describe the experimental adsorption behavior. Within the temperature range studied of 15 °C and 30 °C, the binary CH4/N2 separation factors range from 2.7 to 5.3, and 3.9 to 7.3 for Cs+ and Fe3+ exchanged clinoptilolite, respectively. These results are comparable or better than those found in literature for activated carbon which typically ranges from 2.1 to 5.5 and may serve as an alternative adsorbent for this type of separation which warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ATR:

Attenuated total reflection

CPM:

Concentration pulse method

DS:

Dual site (Langmuir model)

DSL:

Dual site Langmuir

EDS:

Electron dispersive spectroscopy

ELM:

Extended Langmuir model

ETS-4:

Engelhard titanosilicate 4

FH-VSM:

Flory–Huggins vacancy solution model

FT-IR:

Fourier transform infra-red

GSE:

Gibbs surface excess

IAST:

Ideal adsorbed solution theory

LHS:

Left hand side (applies to Eq. 42)

PSA:

Pressure swing adsorption

RHS:

Right hand side (applies to Eq. 42)

sccm:

Standard cubic centimeters per minute at 1 atm total pressure and 0 °C

SEM:

Scanning electron microscopy

SSR:

Sum of square residuals

TCD:

Thermal conductivity detector

VSM:

Vacancy solution model

VV-CPM:

Van der Vlist and Van der Meijden—concentration pulse method

XRD:

X-ray diffraction

A 0, A 1, A 2, A 3 :

Parameters used for the MVV-CPM fit in Eq. 31

B 0, B 1, B 2 :

Parameters used for MVV-CPM fit describing the slope functions of the binary adsorption isotherms

b :

Equilibrium constant parameter (atm−1)

C 0, C 1, C 2 :

Parameters used for MVV-CPM fit describing the slope functions of the binary adsorption isotherms

c :

Adsorbate concentration at the outlet of the column (expressed as mV)

K :

Dimensionless Henry’s law constant

K p :

Dimensional Henry’s law constant (mmol g−1 atm−1)

L :

Length of column (m)

n :

Dimensionless Sips isotherm model parameter

P :

Pressure (atm)

P 0 :

Equilibrium vapor pressure of a pure component at the same temperature and spreading pressure as the adsorbed hypothetical mixture (atm)

q :

Limiting (maximum) amount adsorbed (mmol g−1)

q :

Amount adsorbed (mmol g−1)

q 0 :

Pure gas adsorption capacity (mmol g−1)

R :

Universal gas constant (atm m3mol−1 K−1)

t :

Time (s)

T :

Absolute temperature (K)

ν:

Interstitial fluid velocity (cm·s−1)

x i :

Mole fraction of component i in the adsorbed phase

\(X_{i}^{s}\) :

Mole fraction of component i in the solution representing the adsorbed phase predicted using the FH-VSM

y i :

Mole fraction of component i in the gas phase

Y i :

Mole fraction of component i in the gas phase predicted using the FH-VSM

0:

Pure component for IAST

∞:

Limiting (maximum) value

S :

Component in solution for FH-VSM

1:

Component 1

2:

Component 2

1/2:

Subscript used for expressing selectivity of component 1 over component 2

calc.:

Calculated

exp:

Experimental

i :

Component i

j :

Component j

m :

Maximum

t :

Total

v :

Vacancy

α1/2 :

Binary adsorption separation factor for component 1 over component 2

αo 1/2 :

Ideal adsorption selectivity for component 1 over component 2

αij :

Empirical constant of FH-VSM describing non-idealities cause by interactions of species i and j

ε:

Bed porosity

µ:

Mean retention time (s)

µD :

System dead time (s)

π:

Spreading pressure (atm)

\(\gamma _{1}^{s}\) :

Activity coefficient of component 1 in the surface phase for FH-VSM

\(\gamma _{2}^{s}\) :

Activity coefficient of component 2 in the surface phase

\(\gamma _{v}^{s}\) :

Activity coefficient of the vacancy in the surface phase

ρP :

Adsorbent density without the void space (kg/m3)

References

  • Ackley, M.W., Yang, R.T.: Adsorption characteristics of high-exchange clinoptilolites. Ind. Eng. Chem. Res. 30, 2523–2530 (1991a)

    Article  CAS  Google Scholar 

  • Ackley, M.W., Yang, R.T.: Diffusion in ion-exchanged clinoptilolites. AIChE J. 37, 1645–1656 (1991b)

    Article  CAS  Google Scholar 

  • Ackley, M.W., Giese, R.F., Yang, R.T.: Clinoptilolite: Untapped potential for kinetic gas separations. Zeolites. 12, 780–788 (1992)

    Article  CAS  Google Scholar 

  • Aguilar-Armenta, G., Hernandez-Ramirez, G., Flores-Loyola, E., Ugarte-Castaneda, A., Silva-Gonzalez, R., Tabares-Munoz, C., Jimenez-Lopez, A., Rodriguez-Castellon, E.: Adsorption kinetics of CO2, O2, N2, and CH2 in cation-exchanged clinoptilolite. J. Phys. Chem. B. 105, 1313–1319 (2001)

    Article  CAS  Google Scholar 

  • Aguilar-Armenta, G., Patiño-Iglesias, M.E., Centro, R.L.-R.: Adsorption kinetic behaviour of pure CO2, N2 and CH4 in natural clinoptilolite at different temperatures. Adsorpt. Sci. Technol. 21, 81–91 (2003)

    Article  CAS  Google Scholar 

  • Alver, B.E., Sakizci, M.: Influence of acid treatment on structure of clinoptilolite tuff and its adsorption of methane. Adsorption. 21, 391–399 (2015)

    Article  CAS  Google Scholar 

  • Bakhtyari, A., Mofarahi, M.: Pure and binary adsorption equilibria of methane and nitrogen on zeolite 5A. J. Chem. Eng. Data 59, 626–639 (2014)

    Article  CAS  Google Scholar 

  • BP: BP Statistical Review of World Energy.: 2017 BP Stat. Rev. World Energy. 52 (2017)

  • Brandani, F., Ruthven, D.: Measurement of adsorption equilibria by the zero length column (ZLC) technique part 2: binary systems. Ind. Eng. Chem. Res. 42, 1462–1469 (2003)

    Article  CAS  Google Scholar 

  • Buffman, B.A., Mason, M., Yadav, G.D.: Retention volumes and retention times in binary chromatography. J. Chem. Soc. Faraday Trans. I. 81, 161–173 (1985)

    Article  Google Scholar 

  • Burnham, A., Han, J., Clark, C.E., Wang, M., Dunn, J.B., Palou-Rivera, I.: Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum. Environ. Sci. Technol. 46, 619–627 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Buss, E.: Gravimetric measurement of binary gas adsorption equilibria of methane—carbon dioxide mixtures on activated carbon. Gas Sep. Purif. 9, 189–197 (1995). https://doi.org/10.1016/0950-4214(95)98226-B

    Article  CAS  Google Scholar 

  • Calleja, G., Pau, J., Calles, J.A.: Pure and multicomponent adsorption equilibrium of carbon dioxide, ethylene, and propane on ZSM-5 zeolites with different Si/Al ratios. J. Chem. Eng. Data 43, 994–1003 (1998)

    Article  CAS  Google Scholar 

  • Castaldi, P., Santona, L., Cozza, C., Giuliano, V., Abbruzzese, C., Nastro, V., Melis, P.: Thermal and spectroscopic studies of zeolites exchanged with metal cations. J. Mol. Struct. 734, 99–105 (2005)

    Article  CAS  Google Scholar 

  • Castaldi, P., Santona, L., Enzo, S., Melis, P.: Sorption processes and XRD analysis of a natural zeolite exchanged with Pb2+, Cd2+ and Zn2+ cations. J. Hazard. Mater. 156, 428–434 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Cathles, L.M., Brown, L., Taam, M., Hunter, A.: Howarth, R.W., Santoro, R., Ingraffea, A.: A commentary on “The greenhouse-gas footprint of natural gas in shale formations” by. Clim. Change 113, 525–535 (2012)

    Article  CAS  Google Scholar 

  • Cavenati, S., Grande, C.A., Rodrigues, A.E.: Separation of methane and nitrogen by adsorption on carbon molecular sieve. Sep. Sci. Technol. 40, 2721–2743 (2005)

    Article  CAS  Google Scholar 

  • Chi, C.-H., Sand, L.B.: Synthesis of Na- and K-clinoptilolite endmembers. Nature. 304, 255–257 (1983)

    Article  CAS  Google Scholar 

  • Cochran, T.W., Kabel, R.L., Danner, R.P.: The vacancy solution model of adsorption: improvements and recom- mendations. Am. Inst. Chem. Eng. J. 31, 2075–2082. (1985)(a)

  • Cochran, T.W., Kabel, R.L., Danner, R.P.: Vacancy solution theory of adsorption using Flory/ Huggins activity coefficient equations. Am. Inst. Chem. Eng. J. 31, 268–277 (1985)(b)

  • Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)

    Book  Google Scholar 

  • Doula, M.: Synthesis of a clinoptilolite–Fe system with high Cu sorption capacity. Chemosphere. 67, 731–740 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Doula, M., Ioannou, A., Dimirkou, A.: Copper adsorption and Si, Al, Ca, Mg, and Na release from clinoptilolite. J. Colloid Interface Sci. 245, 237–250 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Dreisbach, F., Staudt, R., Keller, J.U.: High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon. Adsorption. 5, 215–227 (1999)

    Article  CAS  Google Scholar 

  • Erdoğan Alver, B.: Thermal and gas (CH4 and C2H4) adsorption characteristics of nitric acid-treated clinoptilolite. J. Therm. Anal. Calorim. 1–8 (2018)

  • Fatehi, A.I., Loughlin, K.F., Hassan, M.M.: Separation of methane—nitrogen mixtures by pressure swing adsorption using a carbon molecular sieve. Gas Sep. Purif. 9, 199–204 (1995)

    Article  CAS  Google Scholar 

  • Flanigen, E.M., Mumpton, F.A.: Commercial properties of natural zeolites. In: Mumpton, F.A. (ed.) Mineralogy and Geology of Natural Zeolites. Mineralogical Society of America, Washington (1977)

    Google Scholar 

  • Frankwiwicz, T.C., Donnelly, R.G.: Methane/nitrogen gas separation over the zeolite clinoptilolite by the selective adsorption of nitrogen. In: Industrial Gas Separations. pp. 213–233. American Chemical Society (1983)

  • Galabova, I.M., Haralampiev, G.A.: Oxygen enrichment of air on alkaline forms of clinoptilolite. In: Townsend, R.P. (ed.) The Properties and Applications of Zeolites. Chemical Society, London (1980)

    Google Scholar 

  • Galabova, I.M., Haralampiev, G.A., Alexiev, B.: Oxygen enrichment of air using Bulgarian clinoptilolite. In: Sand, L.B., Mumpton, F.A. (eds.) Natural Zeolites. Pergamon Press, Oxford (1978)

    Google Scholar 

  • Garcia-Basabe, Y., Gomez, A., Rodriguez-Iznaga, I., Montero, A., Vlaic, G., Lausi, A., Ruiz-Salvador, A.R.: Locating extra-framework cations in low-silica zeolites by a combinatorial approach of the direct space method and rietveld refinement: application to Ni2+ and Co2+ enriched clinoptilolite. J. Phys. Chem. C 114, 5964–5974 (2010)

    Article  CAS  Google Scholar 

  • Güvenir, Ö: Synthesis and Characterization of Clinoptilolite, (2005)

  • Harlick, P.J.E., Tezel, F.H.: Novel solution method for interpreting binary adsorption isotherms from concentration pulse chromatography data. Adsorption. 6, 293–309 (2000)

    Article  CAS  Google Scholar 

  • Harlick, P.J.E., Tezel, F.H.: CO2–N2 and CO2–CH4 binary adsorption isotherms with H-ZSM5: the importance of experimental data regression with the concentration pulse method. Can. J. Chem. Eng. 79, 236–245 (2001)

    Article  CAS  Google Scholar 

  • Harlick, P.J.E., Tezel, F.H.: Adsorption of carbon dioxide, methane, and nitrogen: pure and binary mixture adsorption by ZSM-5 with SiO2/Al2O3 ratio of 30. Sep. Sci. Technol. 37, 33–60 (2002)

    Article  CAS  Google Scholar 

  • Harlick, P.J., Tezel, F.H.: Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO2 /Al2O3 ratio of 280. Sep. Purif. Technol. 33, 199–210 (2003a))(a .

    Article  CAS  Google Scholar 

  • Harlick, P.J.E., Tezel, F.H.: Use of concentration pulse chromatography for determining binary isotherms: comparison with statically determined binary isotherms. Adsorption. 9, 275–286 (2003b))(c .

    Article  CAS  Google Scholar 

  • Harlick, P.J.E., Tezel, F.H.: Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO2/Al2O3 ratio of 280. Sep. Purif. Technol. 33, 199–210 (2003)(b)

  • Hayhoe, K., Kheshgi, H.S., Jain, A.K., Wuebbles, D.J.: Substitution of natural gas for coal: climatic effects of utility sector emissions. Clim. Change 54, 107–139 (2002)

    Article  CAS  Google Scholar 

  • Hayhurst, D.T.: The potential use of natural zeolites for ammonia removal during coal-gasification. In: Natural Zeolites. Sand, L.B., Mumpton, F.A., (ed.). Pergamon Press, Oxford (1978)

    Google Scholar 

  • Heslop, M.J., Buffham, B.A., Mason, G.: A test of the polynomial-fitting method of determining binary-gas-mixture adsorption equilibria. Ind. Eng. Chem. Res. 35, 1456–1466 (1996)

    Article  CAS  Google Scholar 

  • Heymans, N., Alban, B., Moreau, S., De Weireld, G.: Experimental and theoretical study of the adsorption of pure molecules and binary systems containing methane, carbon monoxide, carbon dioxide and nitrogen. Application to the syngas generation. Chem. Eng. Sci. 66, 3850–3858 (2011)

    Article  CAS  Google Scholar 

  • Howarth, R.W.: A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas. Energy Sci. Eng. 2, 47–60 (2014)

    Article  CAS  Google Scholar 

  • Howarth, R.W., Santoro, R., Ingraffea, A.: Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim. Change 106, 679–690 (2011)

    Article  CAS  Google Scholar 

  • Howery, D.G., Thomas, H.C.: Ion Exchange on the Mineral Clinoptilolite. J. Phys. Chem. 69, 531–537 (1965)

    Article  CAS  Google Scholar 

  • Hugman, R.H., Springer, P.S., Vidas, E.H.: Chemical composition of discovered and undiscovered natural gas in the United States. (1993)

  • Hultman, N., Rebois, D., Scholten, M., Ramig, C.: The greenhouse impact of unconventional gas for electricity generation. Environ. Res. Lett. 6, 044008 (2011)

    Article  CAS  Google Scholar 

  • Hyun, S.H., Danner, R.P.: Equilibrium adsorption of ethane, ethylene, isobutane, carbon dioxide, and their binary mixtures on 13X molecular sieves. J. Chem. Eng. Data 27, 196–200 (1982)

    Article  CAS  Google Scholar 

  • Inglezakis, V.J., Loizidou, M.D., Grigoropoulou, H.P.: Equilibrium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural clinoptilolite. Water Res. 36, 2784–2792 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Inglezakis, V.J., Loizidou, M.D., Grigoropoulou, H.P.: Ion exchange of Pb2+, Cu2+, Fe3+, and Cr3+ on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake. J. Colloid Interface Sci. 261, 49–54 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman, A., Hernandez-maldonado, A.J., Yang, R.T., Chinn, D., Munson, C.L., Mohr, D.H.: Clinoptilolites for nitrogen/methane separation. Chem. Eng. Sci. 59, 2407–2417 (2004)

    Article  CAS  Google Scholar 

  • Jayaraman, A., Yang, R.T., Chinn, D., Munson, C.L.: Tailored clinoptilolites for nitrogen/methane separation. Ind. Eng. Chem. Res. 44, 5184–5192 (2005)

    Article  CAS  Google Scholar 

  • Jiang, M., Griffin, M., Hendrickson, W., Jaramillo, C., VanBriesen, P., Venkatesh, J.: A.: Life cycle greenhouse gas emissions of Marcellus shale gas. Environ. Res. Lett. 6, 034014 (2011)

    Article  CAS  Google Scholar 

  • Keller, J.U., Staudt, R., Tomalla, M.: Volume-gravimetric measurements of binary gas adsorption equilibria. Berichte der Bunsengesellschaft für Phys. Chemie. 96, 28–32 (1992)

    Article  CAS  Google Scholar 

  • Kennedy, D., Tezel, F.: Improved method for determining binary adsorption isotherms by using concentration pulse chromatography: adsorption of CO2 and N2 by silicalite at different pressures. Adsorption. 20, 189–199 (2013)

    Article  CAS  Google Scholar 

  • Kennedy, D.A., Tezel, F.H.: Cation exchange modification of clinoptilolite: screening analysis for potential equilibrium and kinetic adsorption separations involving methane, nitrogen, and carbon dioxide. Microporous Mesoporous Mater. 262, 235–250 (2018)

    Article  CAS  Google Scholar 

  • Kennedy, D.A., Mujcin, M., Trudeau, E., Tezel, F.H.: Pure and binary adsorption equilibria of methane and nitrogen on activated carbons, desiccants, and zeolites at different pressures. J. Chem. Eng. Data 61, 3163–3176 (2016)

    Article  CAS  Google Scholar 

  • Kennedy, D.A., Mujčin, M., Abou-Zeid, C., Tezel, F.H.: Cation exchange modification of clinoptilolite–thermodynamic effects on adsorption separations of carbon dioxide, methane, and nitrogen. Microporous Mesoporous Mater. 274, 327–341 (2019)

    Article  CAS  Google Scholar 

  • Kouvelos, E., Kesore, K., Steriotis, T., Grigoropoulou, H., Bouloubasi, D., Theophilou, N., Tzintzos, S., Kanelopoulos, N.: High pressure N2/CH4 adsorption measurements in clinoptilolites. Microporous Mesoporous Mater. 99, 106–111 (2007)

    Article  CAS  Google Scholar 

  • Koyama, K., Takéuchi, Y.: Clinoptilolite: the distribution of potassium atoms and its role in thermal stability. Zeitschrift fur Krist. 145, 216–239 (1977)

    CAS  Google Scholar 

  • Kuo, J.C., Wang, K.H., Chen, C.: Pros and cons of different nitrogen removal unit (NRU) technology. J. Nat. Gas Sci. Eng. 7, 52–59 (2012)

    Article  CAS  Google Scholar 

  • Kuznicki, S.M., Bell, V.A., Nair, S., Hillhouse, H.W., Jacubinas, R.M., Braunbarth, C.M., Toby, B.H., Tsapatsis, M.: A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature. 412, 720–724 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Kuznicki, S., Bell, V., Petrovic, I., Blosser, P.: Separation of nitrogen from mixtures thereof with methane utilizing barium exchanged ETS-4, (1999) United States Patent Number: 5989316

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Li, P., Tezel, F.H.: Pure and binary adsorption equilibria of carbon dioxide and nitrogen on silicalite. J. Chem. Eng. Data 53, 2479–2487 (2008)

    Article  CAS  Google Scholar 

  • Li, P., Tezel, F.: Pure and binary adsorption of methane and nitrogen by silicalite. J. Chem. Eng. Data 54, 8–15 (2009)

    Article  CAS  Google Scholar 

  • Malek, A., Farooq, S.: Comparison of isotherm models for hydrocarbon adsorption on activated carbon. AIChE J. 42, 3191–3201 (1996)

    Article  CAS  Google Scholar 

  • Mansouri, N., Rikhtegar, N., Panahi, H.A., Atabi, F., Shahraki, B.K.: Porosity, characterization and structural properties of natural zeolite-clinoptilolite-as a sorbent. Environ. Prot. Eng. 39, 139–152 (2013)

    CAS  Google Scholar 

  • Marathe, R.P., Mantri, K., Srinivasan, M.P., Farooq, S.: Effect of Ion exchange and dehydration temperature on the adsorption and diffusion of gases in ETS-4. Ind. Eng. Chem. Res. 43, 5281–5290 (2004)

    Article  CAS  Google Scholar 

  • Markham, E.C., Benton, A.F.: The adsorption of gas mixtures by silica. J. Am. Chem. Soc. 53, 497–507 (1931)

    Article  CAS  Google Scholar 

  • Minato, H., Tamura, T.: Production ofoxygen and nitrogen with natural zeolites. In: Sand, L.B., Mumpton, F.A. (eds.) Natural Zeolites. Pergamon Press, Oxford (1978)

    Google Scholar 

  • Mofarahi, M., Bakhtyari, A.: Experimental investigation and thermodynamic modeling of CH4/N2 adsorption on zeolite 13X. J. Chem. Eng. Data 60, 683–696 (2015)

    Article  CAS  Google Scholar 

  • Mohr, R.J., Vorkapic, D., Rao, M.B., Sircar, S.: Pure and binary gas adsorption equilibria and kinetics of methane and nitrogen on 4A Zeolite by isotope exchange techniqu. Adsorption. 5, 145–158 (1999)

    Article  CAS  Google Scholar 

  • Mozgawa, W.: The influence of some heavy metals cations on the FTIR spectra of zeolites. J. Mol. Struct. 555, 299–304 (2000)

    Article  CAS  Google Scholar 

  • Mozgawa, W., Król, M., Pichór, W.: Use of clinoptilolite for the immobilization of heavy metal ions and preparation of autoclaved building composites. J. Hazard. Mater. 168, 1482–1489 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Mulgundmath, V.P., Tezel, F.H., Saatcioglu, T., Golden, T.C.: Adsorption and separation of CO2/N2 and CO2/CH4 by 13X zeolite. Can. J. Chem. Eng. 90, 730–738 (2012a)

    Article  CAS  Google Scholar 

  • Mulgundmath, V.P., Tezel, F.H., Hou, F., Golden, T.C.: Binary adsorption behaviour of methane and nitrogen gases. J. Porous Mater. 19, 455–464 (2012b)

    Article  CAS  Google Scholar 

  • Mumpton, F.: Clinoptilolite redefined. Am. Mineral. 45, 351–369 (1960)

    CAS  Google Scholar 

  • Mumpton, F.A.: Natural zeolites: a new industrial mineral commodity. In: Sand, L.B., Mumpton, F.A. (eds.) Natural Zeolites. Pergamon Press, Oxford (1978)

    Google Scholar 

  • Myers, A.L.: Gravimetric measurement of adsorption from binary gas mixtures. Pure Appl. Chem. 61, 1949–1953 (1989)

    Article  CAS  Google Scholar 

  • Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed gas adsorption. Am. Inst. Chem. Eng. J. 11, 121–127 (1965)

    Article  CAS  Google Scholar 

  • Peng, X., Cao, D., Wang, W.: Adsorption and separation of CH4/CO2/N2/H2/CO mixtures in hexagonally ordered carbon nanopipes CMK-5. Chem. Eng. Sci. 66, 2266–2276 (2011)

    Article  CAS  Google Scholar 

  • Pillai, R.S., Peter, S.A., Jasra, R.V.: Adsorption of carbon dioxide, methane, nitrogen, oxygen and argon in NaETS-4. Microporous Mesoporous Mater. 113, 268–276 (2008). https://doi.org/10.1016/j.micromeso.2007.11.042

    Article  CAS  Google Scholar 

  • Predescu, L., Tezel, F.H., Stelmack, P.: Adsorption of nitrogen and methane on natural clinoptilolite. Stud. Surf. Sci. Catal. 97, 507–512 (1995)

    Article  CAS  Google Scholar 

  • Rajendran, A., Hocker, T., Di Giovanni, O., Mazzotti, M.: Experimental observation of critical depletion: nitrous oxide adsorption on silica gel. Langmuir. 18, 9726–9734 (2002). https://doi.org/10.1021/la025696j

    Article  CAS  Google Scholar 

  • Rao, M.B., Sircar, S.: Thermodynamic consistency for binary gas adsorption equilibria. Langmuir. 15, 7258–7267 (1999)

    Article  CAS  Google Scholar 

  • Ribeiro, R.P., Sauer, T.P., Lopes, F.V., Moreira, R.F., Grande, C.A., Rodrigues, A.E.: Adsorption of CO2, CH4, and N2 in activated carbon honeycomb monolith. J. Chem. Eng. Data 53, 2311–2317 (2008)

    Article  CAS  Google Scholar 

  • Ritter, J.A., Bhadra, S.J., Ebner, A.D.: On the use of the dual-process Langmuir model for correlating unary equilibria and predicting mixed-gas adsorption equilibria. Langmuir. 27, 4700–4712 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, Toronto (1984)

    Google Scholar 

  • Ruthven, D.M.: Fundamentals of adsorption equilibrium and kinetics in microporous solids. Mol. Siev. 7, 1–43 (2008)

    Article  CAS  Google Scholar 

  • Ruthven, D.M., Kumar, R.: An experimental study of single- component and binary adsorption equilibria by a chromatographic method. Ind. Eng. Chem. Fundam. 19, 27–31 (1980)

    Article  CAS  Google Scholar 

  • Rynders, R.M., Rao, M.B., Sircar, S.: Isotope exchange technique for measurement of gas adsorption equilibria and kinetics. AIChE J. 43, 2456–2470 (1997)

    Article  CAS  Google Scholar 

  • Shah, D.B., Ruthven, D.M.: Measurement of zeolitic diffusivities and equilibrium isotherms by chromatography. AIChE J. 23, 804–809 (1977)

    Article  CAS  Google Scholar 

  • Shannon, R.D., IUCr: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. 32, 751–767 (1976)

    Article  Google Scholar 

  • Shirani, B., Eic, M.: Novel differential column method for measuring multicomponent gas adsorption isotherms in NaY zeolite. Ind. Eng. Chem. Res. 56, 1008–1018 (2017). https://doi.org/10.1021/acs.iecr.6b03525

    Article  CAS  Google Scholar 

  • Silva, J.A.C., Cunha, A.F., Schumann, K., Rodrigues, A.E.: Binary adsorption of CO2/CH4 in binderless beads of 13X zeolite. Microporous Mesoporous Mater. 187, 100–107 (2014)

    Article  CAS  Google Scholar 

  • Sircar, S.: Excess properties and thermodynamics of multicomponent gas adsorption. J. Chem. Soc. Faraday Trans. 1. 81, 1541–1545 (1985). https://doi.org/10.1039/f19858101527

    Article  CAS  Google Scholar 

  • Sircar, S.: Basic research needs for design of adsorptive gas separation processes. Ind. Eng. Chem. Res. 45, 5435–5448 (2006)

    Article  CAS  Google Scholar 

  • Slater, J.C.: Atomic radii in crystals. J. Chem. Phys. 41, 3199–3204 (1964). https://doi.org/10.1063/1.1725697

    Article  CAS  Google Scholar 

  • Smith, A., Klosek, J.: A review of air separation technologies and their integration with energy conversion processes. Fuel Process. Technol. 70, 115–134 (2001)

    Article  CAS  Google Scholar 

  • Stephenson, T., Valle, J.E., Riera-Palou, X.: Modeling the relative GHG emissions of conventional and shale gas production. Environ. Sci. Technol. 45, 10757–10764 (2011) 5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, S., Beath, A., Guo, H., Mallett, C.: An assessment of mine methane mitigation and utilisation technologies. Prog. Energy Combust. Sci. 31, 123–170 (2005)

    Article  CAS  Google Scholar 

  • Suwanayuen, S., Danner, R.P.: A gas adsorption isotherm equation based on vacancy solution theory. Am. Inst. Chem. Eng. J. 26, 68–76 (1980a)

    Article  CAS  Google Scholar 

  • Suwanayuen, S., Danner, R.P.: Vacancy solution theory of adsorption from gas mixtures. Am. Inst. Chem. Eng. J. 26, 76–83 (1980b)

    Article  CAS  Google Scholar 

  • Talu, O., Myers, A.L.: Rigorous thermodynamic treatment of gas adsorption. AIChE J. 34, 1887–1893 (1988). https://doi.org/10.1002/aic.690341114

    Article  CAS  Google Scholar 

  • Tezel, F.H., Apolonatos, G.: Chromatographic study of adsorption for N2, CO and CH4 in molecular sieve zeolites. Gas Sep. Purif. 7, 11–17 (1993)

    Article  CAS  Google Scholar 

  • Tezel, F.H., Tezel, H., Ruthven, D.M.: Determination of pure and binary isotherms for nitrogen and krypton. J. Colloid Interface Sci. 149, 197–207 (1992)

    Article  CAS  Google Scholar 

  • Treacy, M.M.J., Higgins, J.B.: Collection of Simulated XRD Powder Patterns for Zeolites. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Triebe, R.W., Tezel, F.H.: Adsorption of nitrogen and carbon monoxide on clinoptilolite: determination and prediction of pure and binary isotherms. Can. J. Chem. Eng. 73, 717–724 (1995a). https://doi.org/10.1002/cjce.5450730515 a .

    Article  CAS  Google Scholar 

  • Triebe, R.W., Tezel, F.H.: Adsorption of nitrogen, carbon monoxide, carbon dioxide and nitric oxide on molecular sieves. Gas Sep. Purif. 9, 223–230 (1995b). https://doi.org/10.1016/0950-4214(95)00017-6b

    Article  CAS  Google Scholar 

  • Ünaldı, T., Mızrak, İ, Kadir, S.: Physicochemical characterisation of natural K-clinoptilolite and heavy-metal forms from Gördes (Manisa, western Turkey). J. Mol. Struct. 1054–1055, 349–358 (2013). https://doi.org/10.1016/J.MOLSTRUC.2013.09.048

    Article  Google Scholar 

  • Urquieta-González, E.A., Martins, L., Peguin, R.P.S., Batista, M.S.: Identification of extra-framework species on Fe/ZSM-5 and Cu/ZSM-5 catalysts typical microporous molecular sieves with zeolitic structure. Mater. Res. 5, 321–327 (2002). https://doi.org/10.1590/S1516-14392002000300017

    Article  Google Scholar 

  • van der Vlist, E., van der Meijden, J.: Determination of adsorption isotherms of the components of binary gas mixtures by gas chromatography. J. Chromatogr. A. 79, 1–13 (1973). https://doi.org/10.1016/S0021-9673(01)85268-7

    Article  Google Scholar 

  • Vaughan, D.E.W.: Properties of natural zeolites. In: Sand, L.B., Mumpton, F.A. (eds.) Natural Zeolites. Pergamon Press, Oxford (1978)

    Google Scholar 

  • Ward, R.L., McKague, H.L.: Clinoptilolite and heulandite structural differences as revealed by multinuclear nuclear magnetic resonance spectroscopy. J. Phys. Chem. 98, 1232–1237 (1994)

    Article  CAS  Google Scholar 

  • Wise, W.S., Nokleberg, W.J., Kokinos, M.: Clinoptilolite and ferrierite from Agoura, California. Am. Mineral. 54, 887–895 (1969)

    CAS  Google Scholar 

  • Wu, Y.-J., Yang, Y., Kong, X.-M., Li, P., Yu, J.-G., Ribeiro, A.M., Rodrigues, A.E.: Adsorption of pure and binary CO2, CH4, and N2 gas components on activated carbon beads. J. Chem. Eng. Data 60, 2684–2693 (2015)

    Article  CAS  Google Scholar 

  • Yang, R.T.: Gas Separation by Adsorption Process. Butterworth Publishers, Stoneham (1987)

    Google Scholar 

  • Yang, R.T.: Adsorbents: fundamentals and applications. John Wiley & Sons, Inc., Hoboken (2003)

    Book  Google Scholar 

  • Yang, P., Armbruster, T.: Na, K, Rb, and Cs exchange in heulandite single-crystals: X-ray structure refinements at 100 K. J. Solid State Chem. 123, 140–149 (1996)

    Article  CAS  Google Scholar 

  • Yang, C., Xuaf, Q.: States of aluminum in zeolite β and influence of acidic or basic medium. Zeolites. 19, 404–410 (1997)

    Article  CAS  Google Scholar 

  • Yokomichi, Y., Yamabe, T., Kakumoto, T., Okada, O., Ishikawa, H., Nakamura, Y., Kimura, H., Yasuda, I.: Theoretical and experimental study on metal-loaded zeolite catalysts for direct NOx decomposition. Appl. Catal. B. 28, 1–12 (2000)

    Article  CAS  Google Scholar 

  • Yuan, B., Wu, X., Chen, Y., Huang, J., Luo, H., Deng, S.: Adsorption of CO2, CH2 and N2 on ordered mesoporous carbon: approach for greenhouse gases capture and biogas upgrading. Environ. Sci. Technol. 47, 5474–5480 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the financial support received from NSERC (Natural Sciences and Engineering Research Council) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Handan Tezel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, D.A., Mujčin, M., Alenko, T. et al. Pure and mixture adsorption equilibria of methane and nitrogen onto clinoptilolite: effects of Cs+ and Fe3+ exchanged cations on separation performance. Adsorption 25, 135–158 (2019). https://doi.org/10.1007/s10450-018-0001-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-018-0001-z

Keywords

Navigation