Skip to main content

Advertisement

Log in

Effects of alumina phases on CO2 sorption and regeneration properties of potassium-based alumina sorbents

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A range of potassium-based alumina sorbents were fabricated by impregnation of alumina with K2CO3 to examine the effects of the structural and textural properties of alumina on the CO2 sorption and regeneration properties. Alumina materials, which were used as supports, were prepared by calcining alumina at various temperatures (300, 600, 950, and 1,200 °C). The CO2 sorption and regeneration properties of these sorbents were examined during multiple tests in a fixed-bed reactor in the presence of 1 vol% CO2 and 9 vol% H2O. The regeneration capacities of the potassium-based alumina sorbents increased with increasing calcination temperature of alumina. The formation of KHCO3 increased with increasing calcination temperature during CO2 sorption, whereas the formation of KAl(CO3)(OH)2, which is an inactive material, decreased. These results is due to the fact that the structure of alumina by the calcination temperature is related directly to the formation of the by-product [KAl(CO3)(OH)2]. The structure of alumina plays an important role in enhancing the regeneration capacity of the potassium-based alumina sorbent. Based on these results, a new potassium-based sorbent using δ-Al2O3 as a support was developed for post-combustion CO2 capture. This sorbent maintained a high CO2 capture capacity of 88 mg CO2/g sorbent after two cycles. In particular, it showed a faster sorption rate than the other potassium-based alumina sorbents examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abanades, J.C.: The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3. Chem. Eng. J. 90, 303–306 (2002)

    Article  CAS  Google Scholar 

  • Arias, B., Grasa, G., Alonso, M., Abanades, J.C.: Post-combustion calcium looping process with a high stable sorbent activity by recarbonation. Energy Environ. Sci. 5(6), 7353–7359 (2012)

    Article  CAS  Google Scholar 

  • Chen, C., Yang, S.T., Ahn, W.S.: Calcium oxide as high temperature CO2 sorbent: effect of textural properties. Mater. Lett. 75, 140–142 (2012)

    Article  CAS  Google Scholar 

  • Gupta, H., Fan, L.S.: Carbonation–calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind. Eng. Chem. Res. 41, 4035–4042 (2002)

    Article  CAS  Google Scholar 

  • Hagewiesche, D.P., Ashour, S.S., Al-Ghawas, H.A., Sandall, O.C.: Absorption of carbon dioxide into aqueous blends of monoethanolamine and N-methyldiethanolamine. Chem. Eng. Sci. 50(7), 1071–1079 (1995)

    Article  CAS  Google Scholar 

  • Hayashi, H., Taniuchi, J., Furuyashiki, N., Sugiyama, S., Hirano, S., Shigemoto, N., Nonaka, T.: Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K2CO3-on-carbon. Ind. Eng. Chem. Res. 37, 185–191 (1998)

    Article  CAS  Google Scholar 

  • Hirano, S., Shigemoto, N., Yamaha, S., Hayashi, H.: Cyclic fixed-bed operations over K2CO3-on- carbon for the recovery of carbon dioxide under moist conditions. Bull. Chem. Soc. Jpn. 68, 1030–1035 (1995)

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC): IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge (2005)

  • Kim, D.S., Han, S.J., Kwak, S.Y.: Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. J. Colloid Interface Sci. 316, 85–91 (2007)

    Article  CAS  Google Scholar 

  • Kwon, S.C., Fan, M., Dacosta, H.F.M., Russell, A.G., Tsouris, C.: Reaction kinetics of CO2 carbonation with Mg-rich minerals. J. Phys. Chem. A 115(26), 7638–7644 (2011)

    Article  CAS  Google Scholar 

  • Lee, J.B., Ryu, C.K., Baek, J.I., Lee, J.H., Eom, T.H., Kim, S.H.: Sodium-based dry regenerable sorbent for carbon dioxide capture from power plant flue gas. Ind. Eng. Chem. Res. 47, 4465–4472 (2008a)

    Article  CAS  Google Scholar 

  • Lee, S.C., Choi, B.Y., Lee, T.J., Ryu, C.K., Ahn, Y.S., Kim, J.C.: CO2 absorption and regeneration of alkali metal-based solid sorbents. Catal. Today 111, 385–390 (2006)

    Article  CAS  Google Scholar 

  • Lee, S.C., Kim, J.C.: Dry potassium-based sorbents for CO2 capture. Catal. Surv. Asia 11(4), 171–185 (2007)

    Article  CAS  Google Scholar 

  • Lee, S.C., Chae, H.J., Lee, S.J., Choi, B.Y., Yi, C.K., Lee, J.B., Ryu, C.K., Kim, J.C.: Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. Environ. Sci. Technol. 42(8), 2736–2741 (2008b)

    Article  CAS  Google Scholar 

  • Lee, S.C., Chae, H.J., Park, Y.H., Ryu, C.K., Yi, C.K., Kim, J.C.: Novel regenerable potassium-based dry sorbents for CO2 capture at low temperatures. J. Mol. Catal. B Enzym. 56(2–3), 179–184 (2009)

    Article  CAS  Google Scholar 

  • Lee, S.C., Kwon, Y.M., Ryu, C.Y., Chae, H.J., Ragupathy, D., Jung, S.Y., Lee, J.B., Ryu, C.K., Kim, J.C.: Development of new alumina-modified sorbents for CO2 sorption and regeneration at temperatures below 200 °C. Fuel 90, 1465–1470 (2011)

    Article  CAS  Google Scholar 

  • Lee, S.C., Kwon, Y.M., Chae, H.J., Jung, S.Y., Lee, J.B., Ryu, C.K., Yi, C.K., Kim, J.C.: Improving regeneration properties of potassium-based alumina sorbents for carbon dioxide capture from flue gas. Fuel 104, 882–885 (2013)

    Article  CAS  Google Scholar 

  • Li, L., Wen, X., Fu, X., Wang, F., Zhao, N., Xiao, F., Wei, W., Sun, Y.: MgO/Al2O3 sorbent for CO2 capture. Energy Fuels 24, 5773–5780 (2010)

    Article  CAS  Google Scholar 

  • Li, L., Li, Y., Wen, X., Wang, F., Zhao, N., Xiao, F., Wei, W., Sun, Y.: CO2 capture over K2CO3/MgO/Al2O3 dry sorbent in a fluidized bed. Energy Fuels 25, 3835–3842 (2011)

    Article  CAS  Google Scholar 

  • Liang, Y., Harrison, D.P., Gupta, R.P., Green, D.A., McMichael, W.J.: Carbon dioxide capture using dry sodium-based sorbents. Energy Fuels 18, 569–575 (2004)

    Article  CAS  Google Scholar 

  • Mavroudi, M., Kaldis, S.P., Sakellaropoulos, G.P.: Reduction of CO2 emissions by a membrane contacting process. Fuel 82, 2153–2159 (2003)

    Article  CAS  Google Scholar 

  • Okunev, A.G., Sharonov, V.E., Aistov, Y.I., Parmon, V.N.: Sorption of carbon dioxide from wet gases by K2CO3-in-porous matrix: influence of the matrix nature. React. Kinet. Catal. Lett. 71(2), 355–362 (2000)

    Article  CAS  Google Scholar 

  • Okunev, A.G., Sharonov, V.E., Gubar, A.V., Danilova, I.G., Paukshtis, E.A., Moroz, E.M., Kriger, T.A., Malakhov, V.V., Aistov, Y.I.: Sorption of carbon dioxide by the composite sorbent potassium carbonate in porous matrix. Russ. Chem. Bull., Int Ed. 52(2), 359–363 (2003)

    Article  CAS  Google Scholar 

  • Salvador, C., Lu, D., Anthony, E.J., Abanades, J.C.: Enhancement of CaO for CO2 capture in an FBC environment. Chem. Eng. J. 96, 187–195 (2003)

    Article  CAS  Google Scholar 

  • Seo, Y.W., Jo, S.H., Ryu, C.K., Yi, C.K.: Effects of water vapor pretreatment time and reaction temperature on CO2 capture characteristics of a sodium-based solid sorbent in a bubbling fluidized-bed reactor. Chemosphere 69, 712–718 (2007)

    Article  CAS  Google Scholar 

  • Shigemoto, N., Yanagihara, T., Sugiyama, S., Hayashi, H.: Material balance and energy consumption for CO2 recovery from moist flue gas employing K2CO3-on-activated carbon and its evaluation for practical adaptation. Energy Fuels 20(2), 721–726 (2006)

    Article  CAS  Google Scholar 

  • Siriwardane, R.V., Shen, M.S., Fisher, E.P., Poston, J.A.: Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 15, 279–284 (2001)

    Article  CAS  Google Scholar 

  • Stichert, W., Schuth, F.: Influence of crystallite size on the properties of zirconia. Chem. Mater. 10, 2020–2026 (1998)

    Article  CAS  Google Scholar 

  • Takamura, Y., Narita, S., Aoki, J., Hironaka, S., Uchida, S.: Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas. Sep. Purif. Technol. 24, 519–528 (2001)

    Article  CAS  Google Scholar 

  • Wilson, M., Tontiwachwuthikul, P., Chakma, A., Idem, R., Veawab, A., Aroonwilas, A., Gelowitz, D., Barrie, J., Mariz, C.: Test results from a CO2 extraction pilot plant at boundary dam coal-fired power station. Energy 29, 1259–1267 (2004)

    Article  CAS  Google Scholar 

  • Yi, C.K., Jo, S.H., Seo, Y.W., Lee, J.B., Ryu, C.K.: Continuous operation of the potassium-based dry sorbent CO2 capture process with two fluidized-bed reactors. Int. J. Green Gas Cont. 1(1), 31–36 (2007)

    Article  CAS  Google Scholar 

  • Yi, C.K., Jo, S.H., Seo, Y.W.: The effect of voidage on the CO2 sorption capacity of K-based sorbent in a dual circulating fluidized bed process. J. Chem. Eng. Jpn. 41(7), 691–694 (2008)

    Article  CAS  Google Scholar 

  • Zhang, B.T., Fan, M., Bland, A.E.: CO2 separation by a new solid K–Fe sorbent. Energy Fuels 25, 1919–1925 (2011)

    Article  CAS  Google Scholar 

  • Zhao, C.W., Chen, X.P., Zhao, C.S., Liu, Y.K.: Carbonation and hydration characteristics of dry potassium-based sorbents for CO2 capture. Energy Fuels 23(3), 1766–1769 (2009a)

    Article  CAS  Google Scholar 

  • Zhao, C.W., Chen, X.P., Zhao, C.S.: CO2 absorption using dry potassium-based sorbents with different supports. Energy Fuels 23(9), 4683–4687 (2009b)

    Article  CAS  Google Scholar 

  • Zhao, C.W., Chen, X.P., Zhao, C.S.: Effect of crystal structure on CO2 capture characteristics of dry potassium-based sorbents. Chemosphere 75, 1401–1404 (2009c)

    Article  CAS  Google Scholar 

  • Zhao, C.W., Chen, X.P., Zhao, C.S.: K2CO3/Al2O3 for capturing CO2 in flue gas from power plants. Part 4: abrasion characteristics of the K2CO3/Al2O3 sorbent. Energy Fuels 26(2), 1395–1400 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by R&D program under Agency for Defense Development, Republic of Korea. We acknowledge the financial support by grants from Korea CCS R&D Center, funded by the Ministry of Education, Science and Technology of Korean government. This work was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (2010201020007A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Chang Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.C., Cho, M.S., Jung, S.Y. et al. Effects of alumina phases on CO2 sorption and regeneration properties of potassium-based alumina sorbents. Adsorption 20, 331–339 (2014). https://doi.org/10.1007/s10450-013-9596-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9596-2

Keywords

Navigation