Skip to main content
Log in

Simulation study of two-dimensional phase transitions of argon on graphite surface and in slit micropores

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Molecular simulation has been increasingly used in the analysis and modeling of gas adsorption on open surfaces and in porous materials because greater insight could be gained from such a study. In case of homogeneous surfaces or pore walls the adsorption behavior is often complicated by the order–disorder transition. It is shown in our previous publications (Ustinov and Do, Langmuir 28:9543–9553, 2012a; Ustinov and Do, Adsorption 19:291–304, 2013) that once an ordered molecular layer has been formed on the surface, the lattice constant depends on the simulation box size, which requires adjusting the box dimensions parallel to the surface for each value of loading. It was shown that this can be accomplished with the Gibbs–Duhem equation, which results in decreasing lattice constant with an increase of the amount adsorbed. The same feature is expected to be valid for gas adsorption in narrow pores, but this has not been analyzed in the literature. This study aims at an extension of our approach to adsorption in slit graphitic pores using kinetic Monte Carlo method (Ustinov and Do, J Colloid Interface Sci 366:216–223, 2012b). The emphasis rests on the thermodynamic analysis of the two-dimensional (2D) ordering transition and state of the ordered phase; if the ordered phase exists in narrow slit pores, simulation with constant volume box always leads to erroneous results, for example, seemingly incompressible adsorbed phase. We proposed a new approach that allows for modeling thermodynamically consistent adsorption isotherms, which can be used as a basis for further refinement of the pore size distribution analysis of nanoporous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abaza, S., Aranovich, G.L., Donohue, M.D.: Adsorption compression in surface layers. Mol. Phys. 110, 1289–1298 (2012)

    Article  CAS  Google Scholar 

  • Coasne, B., Jain, S.K., Naamar, L., Gubbins, K.E.: Freezing of argon in ordered and disordered porous carbon. Phys. Rev. B 76, 085416 (2007)

    Article  Google Scholar 

  • Coasne, B., Czwartos, J., Sliwinska-Bartkowiak, M., Gubbins, K.E.: Effect of pressure on the freezing of pure fluids and mixtures confined in nanopores. J. Phys. Chem. B 113, 13874–13881 (2009)

    Article  CAS  Google Scholar 

  • D’Amico, K.L., Bohr, J., Moncton, D.E., Gibbs, D.: Melting and orientational epitaxy in argon and xenon monolayers on graphite. Phys. Rev. B 41, 4368–4376 (1990)

    Article  Google Scholar 

  • Demetrio de Souza, J.L.M., Lerner, E.: Melting of argon adsorbed on exfoliated graphite. J. Low Temp. Phys. 66, 367–378 (1987)

    Article  CAS  Google Scholar 

  • Flenner, E., Etters, R.D.: Behavior of partial monolayers of argon adlayers deposited on graphite. Phys. Rev. Lett. 88, 106101 (2002)

    Article  Google Scholar 

  • Flenner, E., Etters, R.D.: Properties of argon adlayers deposited on graphite from Monte Carlo calculations. Phys. Rev. B 73, 125419 (2006)

    Article  Google Scholar 

  • Fan, Ch., Razak, M.A., Do, D.D., Nicholson, D.: On the identification of the sharp spike in the heat curve for argon, nitrogen, and methane adsorption on graphite: reconciliation between computer simulations and experiments. J. Phys. Chem. C 116, 953–962 (2012)

    Article  CAS  Google Scholar 

  • Gardner, L., Kruk, M., Jaroniec, M.: Reference data for argon adsorption on graphitized and nongraphitized carbon blacks. J. Phys. Chem. B 105, 12516–12523 (2001)

    Article  CAS  Google Scholar 

  • Grillet, Y., Rouquerol, F., Rouquerol, J.: Two-dimensional freezing of nitrogen or argon on differently graphitized carbons. J. Colloid Interface Sci. 70, 239–244 (1979)

    Article  CAS  Google Scholar 

  • Irving, J.H., Kirkwood, J.G.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817 (1950)

    Article  CAS  Google Scholar 

  • Kruk, M., Jaroniec, M., Gadkaree, K.P.: Determination of the specific surface area and the pore size of microporous carbons from adsorption potential distributions. Langmuir 15, 1442–1448 (1999)

    Article  CAS  Google Scholar 

  • Kaneko, T., Mima, T., Yasuoka, K.: Phase diagram of Lennard-Jones fluid confined in slit pores. Chem. Phys. Lett. 490, 165–171 (2010)

    Article  CAS  Google Scholar 

  • Larese, J.Z., Zhang, O.M., Passel, L., Hastings, J.M.: Layer-by-layer growth of solid argon films on graphite as studied by neutron diffraction. Phys. Rev. B 40, 4271–4275 (1989)

    Article  CAS  Google Scholar 

  • Long, Y., Palmer, J.C., Coasne, B., Sliwinska-Bartkowiak, M., Gubbins, K.: Pressure enhancement in carbon nanopores: a major confinement effect. Phys. Chem. Chem. Phys. 13, 17163–17170 (2013)

    Article  Google Scholar 

  • Migone, A.D., Li, Z.R., Chan, M.H.W.: Melting transition of submonolayer Ar adsorbed on graphite. Phys. Rev. Lett. 53, 810–813 (1984)

    Article  CAS  Google Scholar 

  • Morrison, J.A.: Calorimetry in the study of physical adsorption. Pure Appl. Chem. 59, 7–14 (1987)

    Article  CAS  Google Scholar 

  • Rouquerol, J., Partyka, S., Rouquerol, F.: Calorimetric evidence for bidimensional phase change in the monolayer of nitrogen or argon adsorbed on graphite at 77 K. J. Chem. Soc. Faraday Trans. I(73), 306–314 (1977)

    Article  Google Scholar 

  • Salamacha, L., Patrykiejew, A., Binder, S., Sokolowski, K.: The structure of fluids confined in crystalline slitlike nanoscopic pores: bilayers. J. Chem. Phys. 120, 1017 (2004)

    Article  CAS  Google Scholar 

  • Ustinov, E.A., Kukushkina, J.A., Betz, W.R.: Modeling of adsorption of gases on graphite surfaces accounting for the solid–fluid nonadditivity correction. Langmuir 27, 209–214 (2011)

    Article  CAS  Google Scholar 

  • Ustinov, E.A., Do, D.D.: Thermodynamic analysis of ordered and disordered monolayer of argon adsorbed on graphite. Langmuir 28, 9543–9553 (2012a)

    Article  CAS  Google Scholar 

  • Ustinov, E.A., Do, D.D.: Application of kinetic Monte Carlo method to equilibrium systems: vapor–liquid equilibria. J. Colloid Interface Sci. 366, 216–223 (2012b)

    Article  CAS  Google Scholar 

  • Ustinov, E.A., Do, D.D.: Simulation of gas adsorption on a surface and in slit pores with grand canonical and canonical kinetic Monte Carlo methods. Phys. Chem. Chem. Phys. 14, 11112–11118 (2012c)

    Article  CAS  Google Scholar 

  • Ustinov, E.A., Do, D.D.: Effects of melting and ordering on the isosteric heat and monolayer density of argon adsorption on graphite. Adsorption 19, 291–304 (2013)

    Article  CAS  Google Scholar 

  • Vishnyakov, A., Neimark, A.V.: Specifics of freezing of Lennard-Jones fluid confined to molecular thin layers. J. Chem. Phys. 118, 7585 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Russian Foundation for Basic Research (Project No. 11-03-00129-a). Support from the Australian Research Council is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene A. Ustinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ustinov, E.A., Do, D.D. Simulation study of two-dimensional phase transitions of argon on graphite surface and in slit micropores. Adsorption 20, 439–451 (2014). https://doi.org/10.1007/s10450-013-9577-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9577-5

Keywords

Navigation