Skip to main content
Log in

Melting of argon adsorbed on exfoliated graphite

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We measured 16 adsorption isotherms by the standard volumetric method in the temperature interval of 54–89 K and found evidence of melting for temperatures above 63 K. We assumed it to be a continuous transition, but we also discuss the possibility that it could be a first-order transition; phase diagrams are given for both assumptions. The isosteric heat of adsorption as a function of coverage is determined and our results are compared with previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Jura and D. Criddle,J. Phys. Chem. 55, 163 (1951).

    Google Scholar 

  2. A. D. Crowell and D. M. Young,Trans. Faraday Soc. 49, 1080 (1953).

    Google Scholar 

  3. M. H. Polley, W. D. Schaeffer, and W. R. Smith,J. Phys. Chem. 57, 469 (1953).

    Google Scholar 

  4. W. D. Schaeffer, W. R. Smith, and M. H. Polley,Ind. Eng. Chem. 45, 172 (1953).

    Google Scholar 

  5. R. A. Beebe, B. Millard, and J. Cynarski,J. Am. Chem. Soc. 75, 839 (1953).

    Google Scholar 

  6. S. Ross and W. J. Winkler,Colloid Sci. 10, 319 (1955).

    Google Scholar 

  7. C. F. Prenzlow and G. D. Halsey, Jr.,J. Phys. Chem. 61, 1158 (1957).

    Google Scholar 

  8. J. R. Sams, Jr., G. Constabaris, and G. D. Halsey, Jr.,J. Chem. Phys. 36, 1334 (1962).

    Google Scholar 

  9. J. R. Sams, Jr., G. Constabaris, and G. D. Halsey, Jr.,J. Phys. Chem. 66, 2154 (1962).

    Google Scholar 

  10. R. A. Beebe and D. M. Young,J. Phys. Chem. 58, 93 (1954).

    Google Scholar 

  11. J. Rouquerol, S. Partyka, and F. Rouquerol,J. Chem. Soc. Faraday Trans. I 73, 306 (1977).

    Google Scholar 

  12. Y. Grillet, F. Rouquerol, and J. Rouquerol,J. Phys. (Paris)38 (Suppl. 10), C4–57 (1977).

    Google Scholar 

  13. Y. Grillet, F. Rouquerol, and J. Rouquerol,J. Colloid Interface Sci. 70, 239 (1979).

    Google Scholar 

  14. F. Simon and R. C. Swain,Z. Phys. Chem. B 28, 189 (1935).

    Google Scholar 

  15. R. J. Bobka, R. E. Dininny, A. R. Siebert, and E. L. Pace,J. Phys. Chem. 61, 1646 (1957).

    Google Scholar 

  16. W. A. Stelle and R. Karl,J. Colloid Interface Sci. 28, 397 (1968).

    Google Scholar 

  17. A. Thomy and X. Duval,J. Chim. Phys. Physicochem. Biol. 66, 1966 (1969).

    Google Scholar 

  18. A. Thomy and X. Duval,J. Chim. Phys. Physicochim. Biol. 67, 286 (1970).

    Google Scholar 

  19. A. Thomy and X. Duval,J. Chim. Phys. Physicochim. Biol. 67, 1101 (1970).

    Google Scholar 

  20. Y. Larher,J. Chem. Phys. 68, 2257 (1978).

    Google Scholar 

  21. F. Millot,J. Phys. (Paris)Lett. 40, L9 (1979).

    Google Scholar 

  22. Y. Larher and B. Gilquin,Phys. Rev. A 20, 1599 (1979).

    Google Scholar 

  23. B. Gilquin, D.Sc. Thesis, Nancy, France, CEA-N-2091 (1979).

  24. Y. Larher,Surf. Sci. 134, 469 (1983).

    Google Scholar 

  25. H. Taub, K. Carneiro, J. K. Kjems, L. Passel, and J. P. McTague,Phys. Rev. B 16, 4551 (1977).

    Google Scholar 

  26. C. Tiby and H. J. Lauter,Surf. Sci. 117, 277 (1982).

    Google Scholar 

  27. C. G. Shaw, S. C. Fain, Jr., and M. D. Chinn,Phys. Rev. Lett. 41, 955 (1978).

    Google Scholar 

  28. C. G. Shaw and S. C. Fain, Jr.,Surf. Sci. 83, 1 (1979).

    Google Scholar 

  29. C. G. Shaw and S. C. Fain, Jr.,Surf. Sci. 91, L1 (1980).

  30. T. T. Chung,Surf. Sci. 87, 348 (1979).

    Google Scholar 

  31. A. D. Migone, Z. R. Li, and M. H. W. Chan,Phys. Rev. Lett. 53, 810 (1984).

    Google Scholar 

  32. J. P. McTague, J. Als-Nielsen, J. Bohr, and M. Nielsen,Phys. Rev. B 25, 7765 (1982).

    Google Scholar 

  33. J. M. Kosterlitz and D. J. Thouless,J. Phys. C 5, 124 (1972).

    Google Scholar 

  34. J. M. Kosterlitz and D. J. Thouless,J. Phys. C 6, 1181 (1973).

    Google Scholar 

  35. D. R. Nelson,Phys. Rev. B 18, 2318 (1978).

    Google Scholar 

  36. B. I. Halperin and D. R. Nelson,Phys. Rev. Lett. 41, 121 (1978).

    Google Scholar 

  37. D. R. Nelson and B. I. Halperin,Phys. Rev. B 19, 2457 (1979).

    Google Scholar 

  38. A. P. Young,Phys. Rev. B 19, 1855 (1979).

    Google Scholar 

  39. P. A. Heiney, P. W. Stephens, R. J. Birgeneau, P. M. Horn, and D. E. Moncton,Phys. Rev. B 28, 6416 (1983).

    Google Scholar 

  40. J. L. M. Demétrio de Souza, M.Sc. Thesis, Universidade Federal do Rio de Janeiro, Brazil (1985).

    Google Scholar 

  41. D. M. Young and A. D. Crowell,Physical Adsorption of Gases (London, Butterworths, 1962).

    Google Scholar 

  42. J. G. Daunt and E. Lerner,J. Low Temp. Phys. 8, 79 (1972).

    Google Scholar 

  43. M. Bretz, J. G. Dash, D. C. Hickernell, E. O. McLean, and O. E. Vilches,Phys. Rev. A 8, 1589 (1973).

    Google Scholar 

  44. G. J. Goellner, J. G. Daunt, and E. Lerner,J. Low Temp. Phys. 21, 347 (1975).

    Google Scholar 

  45. T. Takaishi and Y. Sensui,Trans. Faraday Soc. 59, 2503 (1963).

    Google Scholar 

  46. S. T. Chui,Phys. Rev. Lett. 48, 933 (1982).

    Google Scholar 

  47. S. T. Chui,Phys. Rev. B 28, 178 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demétrio de Souza, J.L.M., Lerner, E. Melting of argon adsorbed on exfoliated graphite. J Low Temp Phys 66, 367–378 (1987). https://doi.org/10.1007/BF00682262

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682262

Keywords

Navigation