Skip to main content
Log in

Isosteric enthalpies for hydrogen adsorbed on nanoporous materials at high pressures

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A sound understanding of any sorption system requires an accurate determination of the enthalpy of adsorption. This is a fundamental thermodynamic quantity that can be determined from experimental sorption data and its correct calculation is extremely important for heat management in adsorptive gas storage applications. It is especially relevant for hydrogen storage, where porous adsorptive storage is regarded as a competing alternative to more mature storage methods such as liquid hydrogen and compressed gas. Among the most common methods to calculate isosteric enthalpies in the literature are the virial equation and the Clausius–Clapeyron equation. Both methods have drawbacks, for example, the arbitrary number of terms in the virial equation and the assumption of ideal gas behaviour in the Clausius–Clapeyron equation. Although some researchers have calculated isosteric enthalpies of adsorption using excess amounts adsorbed, it is arguably more relevant to applications and may also be more thermodynamically consistent to use absolute amounts adsorbed, since the Gibbs excess is a partition, not a thermodynamic phase. In this paper the isosteric enthalpies of adsorption are calculated using the virial, Clausius–Clapeyron and Clapeyron equations from hydrogen sorption data for two materials—activated carbon AX-21 and metal-organic framework MIL-101. It is shown for these two example materials that the Clausius–Clapeyron equation can only be used at low coverage, since hydrogen’s behaviour deviates from ideal at high pressures. The use of the virial equation for isosteric enthalpies is shown to require care, since it is highly dependent on selecting an appropriate number of parameters. A systematic study on the use of different parameters for the virial was performed and it was shown that, for the AX-21 case, the Clausius–Clapeyron seems to give better approximations to the exact isosteric enthalpies calculated using the Clapeyron equation than the virial equation with 10 variable parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

bdc:

Benzene-1,4-dicarboxylate

BET:

Brunauer–Emmett–Teller

DA:

Dubinin–Astakhov

DR:

Dubinin–Radushkevich

EOS:

Equation of state

H–K:

Horváth–Kawazoe

IUPAC:

International Union of Pure and Applied Chemistry

MOF:

Metal-organic framework

MIL:

Matérial Institut Lavoisier

TPD:

Temperature programmed desorption

RMSR:

Root mean squared residual

a :

Adjustable first term parameters for the virial equation

b :

Adjustable second term parameters for the virial equation

b T :

Affinity parameter for the Tóth equation

c T :

Heterogeneity parameter for the Tóth equation

g(n):

Polynomial function for the isosteres

h :

Enthalpy

l :

Number of parameters for a in the virial

m :

Number of parameters for b in the virial

m E :

Excess mass uptake

m A :

Absolute mass uptake

m T :

Total mass uptake

n :

Mass amount adsorbed

n a :

Constant mass amount adsorbed

P :

Absolute pressure

Q st :

Differential isosteric enthalpy of adsorption

\(\overline{{Q_{st} }}\) :

Average differential isosteric enthalpy of adsorption

R :

Molar gas constant

R 2 :

Coefficient of determination

s :

Entropy

T :

Temperature

T f :

Final temperature

T i :

Initial temperature

v :

Molar volume

V A :

Volume occupied by the constant density adsorbate

V P :

Total volume in the pore

v A :

Molar volume of the adsorbate

v B :

Molar volume of the bulk adsorptive

wt%:

Units for hydrogen uptake as a percentage of sample specific dry mass

Δh :

Change in enthalpy

Δs :

Change in entropy

θA :

Fractional filling

ρA :

Adsorbate mass density

ρB :

Bulk adsorptive mass density

χ 2red :

Reduced Chi squared

References

  • Bae, Y.S., Dubbeldam, D., Nelson, A., Walton, K.S., Hupp, J.T., Snurr, R.Q.: Strategies for characterization of large-pore metal-organic frameworks by combined experimental and computational methods. Chem. Mater. 21(20), 4768–4777 (2009). doi:10.1021/Cm803218f

    Article  CAS  Google Scholar 

  • Bhatia, S.K., Myers, A.L.: Optimum conditions for adsorptive storage. Langmuir 22(4), 1688–1700 (2006). doi:10.1021/La0523816

    Article  CAS  Google Scholar 

  • Bimbo, N., Ting, V.P., Hruzewicz-Kolodziejczyk, A., Mays, T.J.: Analysis of hydrogen storage in nanoporous materials for low carbon energy applications. Faraday Discuss. 151, 59–74 (2011). doi:10.1039/C0fd00010h

    Article  CAS  Google Scholar 

  • Bimbo, N., Ting, V.P., Sharpe, J.E., Mays, T.J.: Analysis of optimal conditions for adsorptive hydrogen storage in microporous solids. Colloids Surf A (2013). doi:10.1016/j.colsurfa.2012.11.008

  • British Standards Institution: Determination of the specific surface area of powders—part 1: BET method of gas adsorption for solids (including porous materials), vol. 4359-1. BSI, London (1996)

  • Broom, D.P.: Hydrogen storage materials: the characterisation of their storage properties. Green energy and technology. Springer, London (2011)

    Book  Google Scholar 

  • Chen, B.L., Zhao, X., Putkham, A., Hong, K., Lobkovsky, E.B., Hurtado, E.J., Fletcher, A.J., Thomas, K.M.: Surface interactions and quantum kinetic molecular sieving for H-2 and D-2 adsorption on a mixed metal-organic framework material. J. Am. Chem. Soc. 130(20), 6411–6423 (2008). doi:10.1021/Ja710144k

    Article  CAS  Google Scholar 

  • Czepirski, L., Jagiello, J.: Virial-type thermal equation of gas solid adsorption. Chem. Eng. Sci. 44(4), 797–801 (1989)

    Article  CAS  Google Scholar 

  • Dawson, R., Cooper, A.I., Adams, D.J.: Nanoporous organic polymer networks. Prog. Polym. Sci. 37(4), 530–563 (2012). doi:10.1016/j.progpolymsci.2011.09.002

    Article  CAS  Google Scholar 

  • Dorian, J.P., Franssen, H.T., Simbeck, D.R.: Global challenges in energy. Energy Policy 34(15), 1984–1991 (2006). doi:10.1016/j.enpol.2005.03.010

    Article  Google Scholar 

  • Dubinin, M.M., Astakhov, V.A.: Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Russ. Chem. B 20(1), 8–12 (1971). doi:10.1007/bf00849308

    Article  Google Scholar 

  • Dubinin, M.M., Zaverina, E.D., Radushkevich, L.V.: Sorbtsiya I Struktura Aktivnykh Uglei.1. Issledovanie Adsorbtsii Organicheskikh Parov. Zh Fiz Khim 21(11), 1351–1362 (1947)

    CAS  Google Scholar 

  • Eberle, U., Felderhoff, M., Schuth, F.: Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 48(36), 6608–6630 (2009). doi:10.1002/anie.200806293

    Article  CAS  Google Scholar 

  • Edwards, P.P., Kuznetsov, V.L., David, W.I.F., Brandon, N.P.: Hydrogen and fuel cells: towards a sustainable energy future. Energy Policy 36(12), 4356–4362 (2008). doi:10.1016/j.enpol.2008.09.036

    Article  Google Scholar 

  • Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., Margiolaki, I.: A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743), 2040–2042 (2005). doi:10.1126/science.1116275

    Article  Google Scholar 

  • Gumma, S., Talu, O.: Gibbs dividing surface and helium adsorption. Adsorption 9(1), 17–28 (2003)

    Article  CAS  Google Scholar 

  • Honig, J.M., Reyerson, L.H.: Adsorption of nitrogen, oxygen, and argon on rutile at low temperatures—applicability of the concept of surface heterogeneity. J. Phys. Chem. 56(1), 140–144 (1952)

    Article  CAS  Google Scholar 

  • Horvath, G., Kawazoe, K.: Method for the calculation of effective pore-size distribution in molecular-sieve carbon. J. Chem. Eng. Jpn. 16(6), 470–475 (1983). doi:10.1252/Jcej.16.470

    Article  CAS  Google Scholar 

  • Hruzewicz-Kolodziejczyk, A., Ting, V.P., Bimbo, N., Mays, T.J.: Improving comparability of hydrogen storage capacities of nanoporous materials. Int. J. Hydrogen Energy 37(3), 2728–2736 (2012). doi:10.1016/j.ijhydene.2011.03.001

    Article  CAS  Google Scholar 

  • Kluson, P., Scaife, S.J.: Pope size distribution analysis of structure different microporous carbons—theoretical evaluation based on density functional theory and nitrogen and argon experimental adsorption isotherms at 77 K. Chem. Biochem. Eng. Q. 15(3), 117–125 (2001)

    CAS  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918). doi:10.1021/ja02242a004

    Article  CAS  Google Scholar 

  • Leachman, J.W., Jacobsen, R.T., Penoncello, S.G., Lemmon, E.W.: Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J. Phys. Chem. Ref. Data 38(3) (2009). doi:10.1063/1.3160306

  • Leu, F.C., Chang, T.H.: A convenient TPD method for calculating the integral heat of sorption. J. Chin. Inst. Chem. Eng, 33(3), 321–324 (2002)

    CAS  Google Scholar 

  • Lin, X., Telepeni, I., Blake, A.J., Dailly, A., Brown, C.M., Simmons, J.M., Zoppi, M., Walker, G.S., Thomas, K.M., Mays, T.J., Hubberstey, P., Champness, N.R., Schroder, M.: High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J. Am. Chem. Soc. 131(6), 2159–2171 (2009). doi:10.1021/Ja806624j

    Article  CAS  Google Scholar 

  • Lynch, J.F., Flanagan, T.B.: Calorimetric determination of differential heats of absorption of hydrogen by palladium. J. Chem. Soc. Faraday Trans. 1 70(5), 814–824 (1974). doi:10.1039/F19747000814

    Google Scholar 

  • Mason, E.A., Spurling, T.H. (1969) The virial equation of state, International encyclopedia of physical chemistry and chemical physics topic 10: the fluid state, v 2, 1st edn. Pergamon Press, Oxford

  • Matsumoto, A., Yamamoto, K., Miyata, T.: Microcalorimetric characterization of hydrogen adsorption on nanoporous carbon materials. characterization of porous solids VII. In: Proceedings of the 7th International Symposium on the Characterization of Porous Solids (Cops-VII), vol. 160, Aix-En-Provence, France, 26–28 May 2005, pp. 121–128

  • Mertens, F.O.: Determination of absolute adsorption in highly ordered porous media. Surf. Sci. 603(10–12), 1979–1984 (2009). doi:10.1016/j.susc.2008.10.054

    Article  CAS  Google Scholar 

  • Murray, L.J., Dinca, M., Long, J.R.: Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38(5), 1294–1314 (2009). doi:10.1039/B802256a

    Article  CAS  Google Scholar 

  • Purewal, J., Liu, D.G., Sudik, A., Veenstra, M., Yang, J., Maurer, S., Muller, U., Siegel, D.J.: Improved hydrogen storage and thermal conductivity in high-density MOF-5 composites. J. Phys. Chem. C 116(38), 20199–20212 (2012). doi:10.1021/Jp305524f

    Article  CAS  Google Scholar 

  • Quinones, I., Guiochon, G.: Derivation and application of a Jovanovic–Freundlich isotherm model for single-component adsorption on heterogeneous surfaces. J. Colloid Interface Sci. 183(1), 57–67 (1996). doi:10.1006/jcis. 1996.0518

    Article  CAS  Google Scholar 

  • Richard, M.A., Benard, P., Chahine, R.: Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: modified Dubinin–Astakhov model. Adsorption 15(1), 43–51 (2009). doi:10.1007/s10450-009-9149-x

    Article  CAS  Google Scholar 

  • Rouquerol, F., Rouquerol, J., Sing, K.S.W.: Adsorption by Powders and Porous Solids: Principles, Methodology, and Applications. Academic Press, San Diego (1999)

    Google Scholar 

  • Schlichtenmayer, M., Hirscher, M.: Nanosponges for hydrogen storage. J. Mater. Chem. 22(20), 10134–10143 (2012). doi:10.1039/C2jm15890f

    Article  CAS  Google Scholar 

  • Sharpe, J., Bimbo, N., Ting, V., Burrows, A., Jiang, D., Mays, T.: Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in pores. Adsorption 19(2–4), 643–652 (2013). doi:10.1007/s10450-013-9487-6

    Article  CAS  Google Scholar 

  • Shen, D.M., Bulow, M., Siperstein, F., Engelhard, M., Myers, A.L.: Comparison of experimental techniques for measuring isosteric heat of adsorption. Adsorption 6(4), 275–286 (2000). doi:10.1023/A:1026551213604

    Article  CAS  Google Scholar 

  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985). doi:10.1351/pac198557040603

    Article  CAS  Google Scholar 

  • Sips, R.: On the structure of a catalyst surface. J. Chem. Phys. 16(5), 490–495 (1948). doi:10.1063/1.1746922

    Article  CAS  Google Scholar 

  • Sircar, S.: Gibbsian surface excess for gas adsorption—revisited. Ind. Eng. Chem. Res. 38(10), 3670–3682 (1999)

    Article  CAS  Google Scholar 

  • Sircar, S.: Measurement of Gibbsian surface excess. AIChE J. 47(5), 1169–1176 (2001)

    Article  CAS  Google Scholar 

  • Sircar, S., Mohr, R., Ristic, C., Rao, M.B.: Isosteric heat of adsorption: theory and experiment. J. Phys. Chem. B 103(31), 6539–6546 (1999). doi:10.1021/jp9903817

    Article  CAS  Google Scholar 

  • Streppel, B., Hirscher, M.: BET specific surface area and pore structure of MOFs determined by hydrogen adsorption at 20 K. Phys. Chem. Chem. Phys. 13(8), 3220–3222 (2011). doi:10.1039/c0cp01873b

    Article  CAS  Google Scholar 

  • Sumida, K., Brown, C.M., Herm, Z.R., Chavan, S., Bordiga, S., Long, J.R.: Hydrogen storage properties and neutron scattering studies of Mg-2(dobdc)-a metal-organic framework with open Mg2+ adsorption sites. Chem. Commun. 47(4), 1157–1159 (2011). doi:10.1039/C0cc03453c

    Article  CAS  Google Scholar 

  • Tedds, S., Walton, A., Broom, D.P., Book, D.: Characterisation of porous hydrogen storage materials: carbons, zeolites, MOFs and PIMs. Faraday Discuss. 151, 75–94 (2011). doi:10.1039/C0fd00022a

    Article  CAS  Google Scholar 

  • Toth, J.: Gas-(Dampf-) adsorption an Festen Oberflachen Inhomogener Aktivitat.1. Acta Chim. Acad. Sci. Hung. 30(4), 415 (1962a)

    Google Scholar 

  • Toth, J.: Gas-(Dampf-) adsorption an Festen Oberflachen Inhomogener Aktivitat.2. Acta Chim. Acad. Sci. Hung. 31(4), 393 (1962b)

    CAS  Google Scholar 

  • Toth, J.: Gas-(Dampf-) adsorption an Festen Oberflachen Inhomogener Aktivitat.3. Acta Chim. Acad. Sci. Hung. 32(1), 39 (1962c)

    Google Scholar 

  • Toth, J.: Gas-(Dampf-) adsorption an Festen Oberflachen Inhomogener Aktivitat.4. Acta Chim. Acad. Sci. Hung. 33(2), 153 (1962d)

    CAS  Google Scholar 

  • Toth, J.: Gas-(Dampf-) adsorption an Festen Oberflachen Inhomogener Aktivitat 6. Monomolekulare Adsorption von Gasgemischen. Acta Chim. Acad. Sci. Hung. 39(3), 331 (1963a)

    Google Scholar 

  • Toth, J.: Gas-(Dampf-) adsorption an Festen Oberflachen Inhomogener Aktivitat.5. Monomolekulare Adsorption von Gasgemischen. Acta Chim. Acad. Sci. Hung. 38(3), 233 (1963b)

    CAS  Google Scholar 

  • Toth, J.: State equations of solid–gas interface layers. Acta Chim. Acad. Sci. Hung. 69(3), 311 (1971)

    CAS  Google Scholar 

  • van den Berg, A.W.C., Arean, C.O.: Materials for hydrogen storage: current research trends and perspectives. Chem. Commun. 6, 668–681 (2008). doi:10.1039/B712576n

    Article  Google Scholar 

  • Vuong, T., Monson, P.A.: Monte Carlo simulation studies of heats of adsorption in heterogeneous solids. Langmuir 12(22), 5425–5432 (1996)

    Article  CAS  Google Scholar 

  • Yurum, Y., Taralp, A., Veziroglu, T.N.: Storage of hydrogen in nanostructured carbon materials. Int. J. Hydrogen Energy 34(9), 3784–3798 (2009). doi:10.1016/j.ijhydene.2009.03.001

    Article  Google Scholar 

  • Zhao, X.B., Xiao, B., Fletcher, A.J., Thomas, K.M.: Hydrogen adsorption on functionalized nanoporous activated carbons. J. Phys. Chem. B 109(18), 8880–8888 (2005). doi:10.1021/Jp050080z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

NB, AND and TJM thank the Engineering and Physical Science Research Council (EPSRC) for funding via the SUPERGEN Hydrogen and Fuel Cells Hub (EP/E040071/1). JES thanks the UK EPSRC Doctoral Training Centre in Sustainable Chemical Technologies at the University of Bath and EADS Innovation Works, Munich, Germany for financial support. VPT thanks the University of Bath for funding via a Prize Research Fellowship. The authors also thank the organisers of the Fundamentals of Adsorption 11 conference for the opportunity to present this work orally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Mays.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bimbo, N., Sharpe, J.E., Ting, V.P. et al. Isosteric enthalpies for hydrogen adsorbed on nanoporous materials at high pressures. Adsorption 20, 373–384 (2014). https://doi.org/10.1007/s10450-013-9575-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9575-7

Keywords

Navigation