Skip to main content

Advertisement

Log in

Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: modified Dubinin-Astakhov model

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Simulations of the thermal effects during adsorption cycles are valuable tools for the design of efficient adsorption-based systems such as gas storage, gas separation and adsorption-based heat pumps. An analytical representation of the measured adsorption data over the wide operating pressure and temperature swing of the system is necessary for the calculation of complete mass and energy conservation equations. In Part 1, the Dubinin-Astakhov (D-A) model is adapted to model hydrogen, nitrogen, and methane adsorption isotherms on activated carbon at high pressures and supercritical temperatures assuming a constant microporous adsorption volume. The five parameter D-A type adsorption model is shown to fit the experimental data for hydrogen (30 to 293 K, up to 6 MPa), nitrogen (93 to 298 K, up to 6 MPa), and for methane (243 to 333 K, up to 9 MPa). The quality of the fit of the multiple experimental adsorption isotherms is excellent over the large temperature and pressure ranges involved. The model’s parameters could be determined as well from only the 77 K and 298 K hydrogen isotherms without much reducing the quality of the fit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, R.K., Schwarz, J.A.: Analysis of high pressure adsorption of gases on activated carbon by potential theory. Carbon 26, 873–887 (1988)

    Article  CAS  Google Scholar 

  • Amankwah, K.A.G., Schwarz, J.A.: A modified approach for estimating pseudo-vapor pressures in the application of the Dubinin-Astakhov equation. Carbon 33(9), 1313–1319 (1995)

    Article  CAS  Google Scholar 

  • Bae, J.-S., Bhatia, S.K.: High-pressure adsorption of methane and carbon dioxide on coal. Energy & Fuels 20, 2599–2607 (2006)

    Article  CAS  Google Scholar 

  • Batos-Neto, M., Torres, A.E.B., Azevedo, D.C.S., Cavalcante, C.L., Jr.: A theoretical and experimental study of charge and discharge cycles in a storage vessel for adsorbed natural gas. Adsorption 11, 147–157 (2005)

    Article  Google Scholar 

  • Bénard, P., Chahine, R.: Modeling of high-pressure adsorption isotherms above the critical temperature on microporous adsorbents: application to methane. Langmuir 13, 808–813 (1997)

    Article  Google Scholar 

  • Bénard, P., Chahine, R.: Modeling of adsorption storage of hydrogen on activated carbons. Int. J. Hydrog. Energy 26, 849–855 (2001)

    Article  Google Scholar 

  • Cruz, P., Santos, J.C., Magalhães, F.D., Mendes, A.: Cyclic adsorption separation processes: analysis strategy and optimization procedure. Che. Eng. Sci. 58, 3143–3158 (2003)

    Article  CAS  Google Scholar 

  • Czerny, A.M., Bénard, P., Chahine, R.: Adsorption of nitrogen on granular activated carbon: experiment and modeling. Langmuir 21, 2871–2875 (2005)

    Article  CAS  Google Scholar 

  • Dastgheib, S.A., Karanfil, T.: The effect of the physical and chemical characteristics of activated carbons on the adsorption energy and affinity coefficient of Dubinin equation. J. Colloid Interface Sci. 292, 312–321 (2005)

    Article  CAS  Google Scholar 

  • Dreisbach, F., Lösch, H.W., Harting, P.: Highest pressure adsorption equilibria data: measurement with magnetic suspension balance and analysis with a new adsorbent/adsorbate-volume. Adsorption 8, 95–109 (2002)

    Article  CAS  Google Scholar 

  • Dubinin, M.M.: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60, 235–241 (1960)

    Article  CAS  Google Scholar 

  • Dubinin, M.M.: Physical adsorption of gases and vapors in micropores. In: Cadenhead, D.A., Danielli, J.F., Rosenberg, M.D. (eds.) Progress in Membrane and Surface Science, vol. 9, chap. 1, pp. 1–70. Academic Press, New York (1975)

    Google Scholar 

  • Himeno, S., Komatsu, T., Fujita, S.: High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. J. Chem. Eng. Data 50, 369–376 (2005)

    Article  CAS  Google Scholar 

  • Lemmon, E.W., Peskin, A.P., McLinden, M.O., Friend, D.G.: NIST12 Thermodynamic and Transport Properties of Pure Fluids—NIST Standard Reference Database 12, Version 5.0. US Secretary of Commerce, Washington (2000)

    Google Scholar 

  • Mota, J.P.B., Rodrigues, A.E., Saatdjian, E., Tondeur, D.: Dynamics of natural gas adsorption storage systems employing activated carbon. Carbon 35(9), 1259–1270 (1997)

    Article  CAS  Google Scholar 

  • Murata, K., El-Merraoui, M., Kaneko, K.: A new determination method of absolute adsorption isotherm of supercritical gases under high pressure with a special relevance to density-functional theory study. J. Chem. Phys. 114(9), 4196–4205 (2001)

    Article  CAS  Google Scholar 

  • Murata, K., Miyawaki, J., Kaneko, K.: A simple determination method of absolute adsorbed amount for high pressure gas adsorption. Carbon 40, 425–428 (2002)

    Article  CAS  Google Scholar 

  • Myers, A.L., Monson, P.A.: Adsorption in porous materials at high pressure: theory and experiment. Langmuir 18(26), 10261–10273 (2002)

    Article  CAS  Google Scholar 

  • Ozawa, S., Kusumi, S., Ogino, Y.: Physical adsorption of gases at high pressure IV. An improvement of the Dubinin-Astakhov adsorption equation. J. Colloid Interface Sci. 56(1), 83–91 (1976)

    Article  CAS  Google Scholar 

  • Poirier, E., Chahine, R., Bénard, P., Lafi, L., Dorval-Douville, G., Chandonia, P.A.: Hydrogen adsorption measurements and modeling on metal-organic frameworks and single-walled carbon nanotubes. Langmuir 22(21), 8784–8789 (2006)

    Article  CAS  Google Scholar 

  • Richard, M.-A., Bénard, P., Chahine, R.: Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 2: conservation of mass and energy. Adsorption (2009, in press)

  • Salem, M.M.K., Braeuer, P., Szombathely, M.V., Heuchel, M., Harting, P., Quitzch, K., Jaroniec, M.: Thermodynamics of high-pressure adsorption of argon, nitrogen, and methane on microporous adsorbents. Langmuir 14(12), 3376–3389 (1998)

    Article  CAS  Google Scholar 

  • Sircar, S.: Gibbsian surface excess for gas adsorption—revisited. Ind. Eng. Chem. Res. 38(10), 3670–3682 (1999)

    Article  CAS  Google Scholar 

  • Talu, O., Myers, A.L.: Molecular simulation of adsorption: Gibbs dividing surface and comparison with experiment. AIChE J. 47(5), 1160–1168 (2001)

    Article  CAS  Google Scholar 

  • Teng, Y., Wang, R.Z., Wu, J.Y.: Study of the fundamentals of adsorption systems. Appl. Therm. Eng. 17(4), 327–338 (1997)

    Article  Google Scholar 

  • Zhang, S.-Y., Talu, O., Hayhurst, D.T.: High-pressure adsorption of methane in NaX, MgX, CaX, SrX, and BaX. J. Phys. Chem. 95, 1722–1726 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-A. Richard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, MA., Bénard, P. & Chahine, R. Gas adsorption process in activated carbon over a wide temperature range above the critical point. Part 1: modified Dubinin-Astakhov model. Adsorption 15, 43–51 (2009). https://doi.org/10.1007/s10450-009-9149-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-009-9149-x

Keywords

Navigation