Skip to main content

Storage of Hydrogen on Nanoporous Adsorbents

  • Chapter
  • First Online:
Nanoporous Materials for Gas Storage

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The adsorption of hydrogen has extensively been studied on various nanoporous adsorbents with the driving force being the need to safely store this increasingly important energy vector. This chapter explores the research avenues that have been taken for the storage of hydrogen with zeolites, carbon-based materials, and metal-organic frameworks. Many studies have been devoted to characterization at 77 K and 1 bar.

This chapter highlights that few materials meet the accepted requirements for vehicular hydrogen storage at 77 K and that no material seems to be of interest for hydrogen storage at room temperature. A general need to store the hydrogen under significant pressure is evident. It is clear that there is general necessity for nanoporous materials to stimulate stronger interactions with hydrogen for an adsorptive-based solution to be envisaged, and several strategies are described to this end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elam CC, Gregoire Padró CE, Sandrock G, Luzzi A, Lindblad P, Fjermestad Hagen E (2003) Realizing the hydrogen future: the international energy agency’s efforts to advance hydrogen energy technologies. Int J Hydrog Energy 28(6):601–607

    Article  Google Scholar 

  2. Banerjee S, Musa MN, Jaafar AB (2017) Economic assessment and prospect of hydrogen generated by OTEC as future fuel. Int J Hydrog Energy 42(1):26–37

    Article  Google Scholar 

  3. Petitpas G, Bénard P, Klebanoffc LE, Aceves XS (2014) A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods. Int J Hydrog Energy 39(20):10564–10584

    Article  Google Scholar 

  4. Bhatia SK, Myers AL (2006) Optimum conditions for adsorptive storage. Langmuir 22(4):1688–1700

    Article  Google Scholar 

  5. Garrone E, Bonelli B, Areán CO (2008) Enthalpy–entropy correlation for hydrogen adsorption on zeolites. Chem Phys Lett 456(1–3):68–70

    Article  Google Scholar 

  6. Bae Y-S, Snurr RQ (2010) Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal-organic frameworks. Micro Meso Mater 132(1–2):300–303

    Article  Google Scholar 

  7. Rogacka J, Firlej L, Kuchta B (2017) Modeling of low temperature adsorption of hydrogen in carbon nanopores. J Mol Model 23(1):20

    Article  Google Scholar 

  8. Bénard P, Chahine R (2007) Storage of hydrogen by physisorption on carbon and nanostructured materials. Scr Mater 56(10):803–808

    Article  Google Scholar 

  9. Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KSW (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, Oxford

    Google Scholar 

  10. Bastos-Neto M, Patzschke C, Lange M, Möllmer J, Möller A, Fichtner S, Schrage C, Lässig D, Lincke J, Staudt R, Krautscheidc H, Gläser (2012) Assessment of hydrogen storage by physisorption in porous materials. Energy Environ Sci 5(8):8294–8303

    Article  Google Scholar 

  11. Broom DP, Hirscher M (2016) Irreproducibility in hydrogen storage material research. Energy Environ Sci 9(11):3368–3380

    Article  Google Scholar 

  12. Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types. Elsevier, Amsterdam

    Google Scholar 

  13. Treacy MMJ, Rivin I, Balkovsky E, Randall KH, Foster MD (2004) Enumeration of periodic tetrahedral frameworks. II Polynodal graphs. Micro Meso Mater 74(1–3):121–132

    Article  Google Scholar 

  14. Weitkamp J, Fritz M, Ernst S (1995) Zeolites as media for hydrogen storage. Int J Hydrog Energy 20(12):967–970

    Article  Google Scholar 

  15. Dong J, Wang X, Xu H, Zhao Q, Li J (2007) Hydrogen storage in several microporous zeolites. Int J Hydrog Energy 32(18):4998–5004

    Article  Google Scholar 

  16. Fraenkel D, Shabtai J (1977) Encapsulation of hydrogen in molecular sieve zeolites. J Am Chem Soc 99(21):7074–7076

    Article  Google Scholar 

  17. Efstathiou AM, Siub SL, Bennett CO (1990) Encapsulation of molecular hydrogen in zeolites at 1 atm. J Catal 123(2):456–462

    Article  Google Scholar 

  18. Langmi HW, Walton A, Al-Mamouri MM, Johnson SR, Book D, Speight JD, Edwards PP, Gameson I, Anderson PA, Harris IR (2003) Hydrogen adsorption in zeolites A, X, Y and RHO. J Alloys Compd 356–357:710–715

    Article  Google Scholar 

  19. Langmi HW, Book D, Walton A, Johnson SR, Al-Mamouri MM, Speight JD, Edwards PP, Harris IR, Anderson PA (2005) Hydrogen storage in ion-exchanged zeolites. J. Alloys Compd 404–406:637–642

    Article  Google Scholar 

  20. Li Y, Yang RT (2006) Hydrogen storage in low silica type X zeolites. J Phys Chem B 110(34):17175–17181

    Article  Google Scholar 

  21. Zecchina A, Bordiga S, Vitillo JG, Ricchiardi G, Lamberti C, Spoto G, Bjørgen M, Lillerud KP (2005) Liquid hydrogen in protonic Chabazite. J Am Chem Soc 127(17):6361–6366

    Article  Google Scholar 

  22. Regli L, Zecchina A, Vitillo JG, Cocina D, Spoto G, Lamberti C, Lillerud KP, Olsbye U, Bordiga S (2005) Phys Chem Chem Phys 7(17):3197–3203

    Article  Google Scholar 

  23. Kazansky VB, Borovkov VY, Serich A, Karge HG (1998) Low temperature hydrogen adsorption on sodium forms of faujasites: barometric measurements and drift spectra. Micro Meso Mater 22(1–3):251–259

    Article  Google Scholar 

  24. Chahine R, Bose TK (1994) Low-pressure adsorption storage of hydrogen. Int J Hydrog Energy 19(2):161–164

    Article  Google Scholar 

  25. Poirier E, Chahine R, Bose TK (2001) Hydrogen adsorption in carbon nanostructures. Int J Hydrog Energy 26(8):831–835

    Article  Google Scholar 

  26. Marsh H, Rodriguez-Reinoso F (2006) Activated carbon. Elsevier, Amsterdam

    Book  Google Scholar 

  27. Bottani EJ, Tascon JMD (2011) Adsorption by carbons. Elsevier, Amsterdam

    Google Scholar 

  28. Tascon JMD (2012) Novel carbon adsorbents. Elsevier, Amsterdam

    Google Scholar 

  29. Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120(3–4):389–398

    Article  Google Scholar 

  30. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7(4):1250–1280

    Article  Google Scholar 

  31. Panella B, Hirscher M, Roth S (2005) Hydrogen adsorption in different carbon nanostructures. Carbon 43(10):2209–2214

    Article  Google Scholar 

  32. Jin H, Lee YS, Hong I (2007) Hydrogen adsorption characteristics of activated carbon. Catal Today 120(3–4):399–406

    Article  Google Scholar 

  33. Wang H, Gao Q, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131(20):7016–7022

    Article  Google Scholar 

  34. Zhang C, Geng Z, Cai M, Zhang J, Lin X, Xina H, Ma J (2013) Microstructure regulation of super activated carbon from biomass source corncob with enhanced hydrogen uptake. Int J Hydrog Energy 38(22):9243–9250

    Article  Google Scholar 

  35. Figueroa-Torres MZ, Robau-Sánchez A, De la Torre-Sáenz L, Aguilar-Elguézabal A (2007) Hydrogen adsorption by nanostructured carbons synthesized by chemical activation. Micro Meso Mater 98(1–3):89–93

    Article  Google Scholar 

  36. Tellez-Juárez MC, Fierro V, Zhao W, Fernández-Huerta N, Izquierdo MT, Reguera E, Celzard A (2014) Hydrogen storage in activated carbons produced from coals of different ranks: effect of oxygen content. Int J Hydrog Energy 39(10):4996–5002

    Article  Google Scholar 

  37. Sevilla M, Mokaya R, Fuertes AB (2011) Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage. Energy Environ Sci 4(8):2930–2936

    Article  Google Scholar 

  38. Masikan E, Mokaya R (2013) Preparation of ultrahigh surface area porous carbons templated using zeolite 13X for enhanced hydrogen storage. Prog Nat Sci Mater Int 23(3):308–316

    Article  Google Scholar 

  39. Yang Z, Xia Y, Mokaya R (2007) Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc 129(6):1673–1679

    Article  Google Scholar 

  40. Zhao X, Xiao B, Fletcher AJ, Thomas KM (2005) Hydrogen adsorption on functionalized Nanoporous activated carbons. J Phys Chem B 109(18):8880–8888

    Article  Google Scholar 

  41. Ströbel R, Jörissen L, Schliermann T, Trapp V, Schütz W, Bohmhammel K, Wolf G, Garche J (1999) Hydrogen adsorption on carbon materials. J Power Sources 84(2):221–224

    Article  Google Scholar 

  42. Hou P-X, Xu S-T, Ying Z, Yang Q-H, Liu C, Cheng H-M (2003) Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters. Carbon 41(13):2471–2476

    Article  Google Scholar 

  43. Kuchta B, Firlej L, Mohammadhosseini A, Boulet P, Beckner M, Romanos J, Pfeifer P (2012) Hypothetical high-surface-area carbons with exceptional hydrogen storage capacities: open carbon frameworks. J Am Chem Soc 134(36):15130–15137

    Article  Google Scholar 

  44. Kuchta B, Firlej L, Mohammadhosseini A, Beckner M, Romanos J, Pfeifer P (2013) Open carbon frameworks – a search for optimal geometry for hydrogen storage. J Mol Mod 19(10):4079–4087

    Article  Google Scholar 

  45. Firlej L, Pfeifer P, Kuchta B (2013) Understanding universal adsorption limits for hydrogen storage in Nano porous systems. Adv Mater 25(41):5971–5974

    Article  Google Scholar 

  46. Pang JB, Hampsey JE, Wu ZW, Hu QY, Lu YF (2004) Hydrogen adsorption in mesoporous carbons. Appl Phys Lett 85(21):4887–4889

    Article  Google Scholar 

  47. Gadiou R, Saadallah S-E, Piquero T, David P, Parmentier J, Vix-Guterl C (2005) The influence of textural properties on the adsorption of hydrogen on ordered nanostructured carbons. Micro Meso Mater 79(1–3):121–128

    Article  Google Scholar 

  48. Ustinov EA, Gavrilov VY, Mel’gunov MS, Sokolov VV, Berveno VP, Berveno AV (2017) Characterization of activated carbons with low-temperature hydrogen adsorption. Carbon 121(1):563–573

    Article  Google Scholar 

  49. Yushin G, Dash R, Jagiello J, Fischer JE, Gogotsi Y (2006) Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption. Adv Funct Mater 16(17):2288–2293

    Article  Google Scholar 

  50. Sethia G, Sayari A (2016) Activated carbon with optimum pore size distribution for hydrogen storage. Carbon 99:289–294

    Article  Google Scholar 

  51. Gogotsi Y, Dash RK, Yushin G, Yildirim T, Laudisio G, Fischer JE (2005) Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J Am Chem Soc 127(46):16006–16007

    Article  Google Scholar 

  52. Sevilla M, Fuertes AB, Mokaya R (2011) Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythiophene. Int J Hydrog Energy 36(24):15658–15663

    Article  Google Scholar 

  53. Gogotsi Y, Portet C, Osswald S, Simmons JM, Yildirim T, Laudisio G, Fischer JE (2009) Importance of pore size in high-pressure hydrogen storage by porous carbons. Int J Hydrog Energy 34(15):6314–6319

    Article  Google Scholar 

  54. Cabria I, Lopez MJ, Alonso JA (2007) The optimum average nanopore size for hydrogen storage in carbon nanoporous materials. Carbon 45:2649–2658

    Article  Google Scholar 

  55. Garcia Blanco AA, de Oliveira JCA, Lopez R, Moreno-Pirajan JC, Giraldo L, Zgrablich G, Sapag K (2010) A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen. Colloids Surf A Physicochem Eng Asp 357(1–3):74–83

    Article  Google Scholar 

  56. Goler S, Coletti C, Tozzini V, Piazza V, Mashoff T, Beltram F, Pellegrini V, Heun S (2013) Influence of graphene curvature on hydrogen adsorption: toward hydrogen storage devices. J Phys Chem C 117(22):11506–11513

    Article  Google Scholar 

  57. Murata K, Kaneko K, Kanoh H, Kasuya D, Takahashi K, Kokai F, Yudasaka M, Iijima S (2002) Adsorption mechanism of supercritical hydrogen in internal and interstitial nanospaces of single-wall carbon nanohorn assembly. J Phys Chem B 106(43):11132–11138

    Article  Google Scholar 

  58. Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler AG, Colbert D, Smith KA, Smalley RE (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl Phys Lett 74(16):2307–2309

    Article  Google Scholar 

  59. Yang FH, Lachawiec AJ, Yang RT (2006) Adsorption of spillover hydrogen atoms on Single-Wall carbon nanotubes. Phys Chem B 110(12):6236–6244

    Article  Google Scholar 

  60. Ansón A, Jagiello J, Parra JB, Sanjuán ML, Benito AM, Maser WK, Martínez MT (2004) Porosity, surface area, surface energy, and hydrogen adsorption in nanostructured carbons. J Phys Chem B 108(40):15820–15826

    Article  Google Scholar 

  61. Wang Q, Johnson JK (1999) Optimization of carbon nanotube arrays for hydrogen adsorption. J Phys Chem B 103(23):4809–4813

    Article  Google Scholar 

  62. Wang Q, Johnson JK (1999b) Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J Chem Phys 110(1):577–586

    Article  Google Scholar 

  63. Schimmel HG, Kearley GJ, Nijkamp MG, Visser CT, de Jong KP, Mulder FM (2003) Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. Chem Eur J 9(19):4764–4770

    Article  Google Scholar 

  64. Zhou L, Zhou Y, Sun Y (2004) A comparative study of hydrogen adsorption on superactivated carbon versus carbon nanotubes. Int J Hydrog Energy 29(5):475–479

    Article  Google Scholar 

  65. Liu F, Zhang X, Cheng J, Tu J, Kong F, Huang W, Chen C (2003) Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior. Carbon 41(13):2527–2532

    Article  Google Scholar 

  66. Darkrim Lamari F, Levesque D (2011) Hydrogen adsorption on functionalized graphene. Carbon 49(15):5196–5200

    Article  Google Scholar 

  67. Firlej L, Roszak S, Kuchta B, Pfeifer P, Wexler C (2009) Enhanced hydrogen adsorption in boron substituted carbon nanospaces. J Chem Phys 131:164702

    Article  Google Scholar 

  68. Roszak R, Firlej L, Roszak S, Pfeifer P, Kuchta B (2016) Hydrogen storage by adsorption in porous materials: is it possible? Coll Surf A Physicochem Eng Asp 496(10):69–76

    Article  Google Scholar 

  69. Ariharan A, Viswanathan B, Nandhakumar V (2016) Hydrogen storage on boron substituted carbon materials. Int J Hydrog Energy 41(5):3527–3536

    Article  Google Scholar 

  70. Kubas GJ, Ryan RR, Swanson BI, Vergamini PJ, Wasserman HJ (1984) Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2) (M = molybdenum or tungsten; R = cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand. J Am Chem Soc 106(2):451–452

    Article  Google Scholar 

  71. Giraudet S, Zhu Z (2011) Hydrogen adsorption in nitrogen enriched ordered mesoporous carbons doped with nickel nanoparticles. Carbon 49(2):398–405

    Article  Google Scholar 

  72. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379

    Article  Google Scholar 

  73. Saha D, Deng S (2009) Hydrogen adsorption on ordered mesoporous carbons doped with Pd, Pt, Ni, and Ru. Langmuir 25(21):12550–12560

    Article  Google Scholar 

  74. Nishihara H, Hou P-X, Li L-X, Ito M, Uchiyama M, Kaburagi T, Ikura A, Katamura J, Kawarada T, Mizuuchi K, Kyotani T (2009) High-pressure hydrogen storage in zeolite-templated carbon. J Phys Chem C 113(8):3189–3196

    Article  Google Scholar 

  75. Contescu CI, Brown CM, Liu Y, Bhat VV, Gallego NC (2009) Detection of hydrogen spillover in palladium-modified activated carbon fibers during hydrogen adsorption. J Phys Chem C 113(14):5886–5890

    Article  Google Scholar 

  76. Takagi H, Hatori H, Yamada Y, Matsuo S, Shiraishi M (2004) Hydrogen adsorption properties of activated carbons with modified surfaces. J Alloys Compd 385(1–2):257–263

    Article  Google Scholar 

  77. Ahluwali RK, Peng JK (2009) Automotive hydrogen storage system using cryo-adsorption on activated carbon. Int J Hydrog Energy 34(13):5476–5487

    Article  Google Scholar 

  78. Richard M-A, Cossement D, Chandonia P-A, Chahine R, Mori D, Hirose K (2009) Preliminary evaluation of the performance of an adsorption-based hydrogen storage system. AICHE J 55(11):2985–2996

    Article  Google Scholar 

  79. Kitagawa S, Kitaura R, Noro SI (2004) Functional Porous coordination polymers. Angew Chem Int Ed 43(18):2334–2375

    Article  Google Scholar 

  80. Rowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Micro Meso Mater 73(1–2):3–14

    Article  Google Scholar 

  81. Hoskins BF, Robson R (1989) Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J Am Chem Soc 111(15):5962–5964

    Article  Google Scholar 

  82. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43(1):58–67

    Article  Google Scholar 

  83. Ding S-Y, Wang W (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42(2):548–568

    Article  Google Scholar 

  84. Jiang J-X, Cooper AI (2010) Functional metal-organic frameworks: gas storage, separation and catalysis (M. Schröder Ed.). Topics in Current Chemistry, vol. 293, pp 1–33

    Google Scholar 

  85. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472

    Article  Google Scholar 

  86. Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37(1):191–214

    Article  Google Scholar 

  87. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705–714

    Article  Google Scholar 

  88. Yaghi OM, Li H (1995) Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J Am Chem Soc 117(41):10401–10402

    Article  Google Scholar 

  89. Férey G (2001) Microporous solids: from organically templated inorganic skeletons to hybrid frameworks ... Ecumenism in Chemistry. Chem Mater 13(10):3084–3098

    Article  Google Scholar 

  90. Kondo M, Yoshitomi T, Seki K, Matsuzaka H, Kitagawa S (1997) Three-dimensional framework with channeling cavities for small molecules: {[M2(4, 4′-bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn). Angew Chem Int Ed 36:1725–1727

    Article  Google Scholar 

  91. Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38(5):1477–1504

    Article  Google Scholar 

  92. Murray LJ, Dinca M, Long JR (2009) Hydrogen storage in metal–organic frameworks. Chem Soc Rev 38(5):1294–1314

    Article  Google Scholar 

  93. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300(5622):1127–1129

    Article  Google Scholar 

  94. Han SS, Mendoza-Cortés JL, Goddard WA III (2009) Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks. Chem Soc Rev 38(5):1460–1476

    Article  Google Scholar 

  95. Kaye SS, Dailly A, Yaghi OM, Long JR (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 129(46):14176–14177

    Article  Google Scholar 

  96. Robson H, Lillerud KP (eds) (2001) Verified syntheses of Zeolitic materials. Elsevier, Amsterdam

    Google Scholar 

  97. Low JJ, Benin AI, Jakubczak P, Abrahamian JF, Faheem SA, Willis RR (2009) Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. J Am Chem Soc 131(43):15834–15842

    Article  Google Scholar 

  98. Álvarez JR, Sánchez-González E, Pérez E, Schneider-Revueltas E, Martínez A, Tejeda-Cruz A, Islas-Jácome A, González-Zamora E, Ibarra IA (2017) Structure stability of HKUST-1 towards water and ethanol and their effect on its CO2 capture properties. Dalton Trans 46(28):9192–9200

    Article  Google Scholar 

  99. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042

    Article  Google Scholar 

  100. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851

    Article  Google Scholar 

  101. Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydın AÖ, Hupp JT (2012) Metal−organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134(36):15016–15021

    Article  Google Scholar 

  102. Panella B, Hirscher M, Pütter H, Müller U (2006) Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv Funct Mater 16(4):520–524

    Article  Google Scholar 

  103. Frost H, Düren T, Snurr RQ (2006) Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal−organic frameworks. J Phys Chem B 110(19):9565–9570

    Article  Google Scholar 

  104. Rowsell JLC, Eckert J, Yaghi OM (2005) Characterization of H2 binding sites in prototypical metal−organic frameworks by inelastic neutron scattering. J Am Chem Soc 127(42):14904–14910

    Article  Google Scholar 

  105. Yildirim T, Hartman MR (2005) Direct observation of hydrogen adsorption sites and Nanocage formation in metal-organic frameworks. Phys Rev Lett 95(21):215504

    Article  Google Scholar 

  106. Yan Y, Lin X, Yang S, Blake AJ, Dailly A, Champness NR, Hubberstey P, Schröder M (2009) Exceptionally high H2 storage by a metal–organic polyhedral framework. Chem Commun 9:1025–1027

    Article  Google Scholar 

  107. Lin X, Telepeni I, Blake AJ, Dailly A, Brown CM, Simmons JM, Zoppi M, Walker GS, Thomas KM, Mays TJ, Hubberstey P, Champness NR, Schröder M (2009) High capacity hydrogen adsorption in Cu(II) Tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc 131(6):2159–2171

    Article  Google Scholar 

  108. Wong-Foy AG, Matzger AJ, Yaghi OM (2006) Exceptional H2 saturation uptake in microporous metal−organic frameworks. J Am Chem Soc 128(11):3494–3495

    Article  Google Scholar 

  109. Ahmed A, Liu YY, Purewal J, Tran LD, Wong-Foy AG, Veenstra M, Matzger AJ, Siegel DJ (2017) Balancing gravimetric and volumetric hydrogen density in MOFs. Energy Environ Sci 10(11):2459–2471

    Article  Google Scholar 

  110. Chung YG, Camp J, Haranczyk M, Sikora BJ, Bury W, Krungleviciute V, Yildirim T, Farha OK, Sholl DS, Snurr RQ (2014) Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of Nanoporous crystals. Chem Mater 26(21):6185–6192

    Article  Google Scholar 

  111. Gómez-Gualdrón DA, Colón YJ, Zhang X, Wang TC, Chen Y-S, Hupp JT, Yildirim T, Farha OK, Zhang J, Snurr RQ (2016) Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy Environ Sci 9(10):3279–3289

    Article  Google Scholar 

  112. Sillar K, Hofmann A, Sauer J (2009) Ab initio study of hydrogen adsorption in MOF-5. J Am Chem Soc 131(11):4143–4150

    Article  Google Scholar 

  113. Bordiga S, Vitillo JG, Ricchiardi G, Regli L, Cocina D, Zecchina A, Arstad B, Bjrgen M, Hafizovic J, Lillerud KP (2005) Interaction of hydrogen with MOF-5. J Phys Chem B 109(39):18237–18242

    Article  Google Scholar 

  114. Kubota Y, Takata M, Matsuda R, Kitaura R, Kitagawa S, Kato K, Sakata M, Kobayashi MC (2005) Direct observation of hydrogen molecules adsorbed onto a microporous coordination polymer. Angew Chem Int Ed 44(6):920–923

    Article  Google Scholar 

  115. Chavan S, Vitillo JG, Gianolio D, Zavorotynska O, Civalleri B, Jakobsen S, Nilsen MH, Valenzano L, Lamberti C, Lillerud KP, Bordiga S (2012) H2 storage in isostructural UiO-67 and UiO-66 MOFs. Phys Chem Chem Phys 14(5):1614–1626

    Article  Google Scholar 

  116. Chun H, Dybtsev DN, Kim H, Kim K (2005) Synthesis, X-ray crystal structures, and gas sorption properties of Pillared Square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem Eur J 11(12):3521–3529

    Article  Google Scholar 

  117. Dinca M, Long JR (2005) Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg3(O2C-C10H6-CO2)3. J Am Chem Soc 127(26):9376–9377

    Article  Google Scholar 

  118. Han SS, Deng W-Q, Goddard WA III (2007) Improved designs of metal-organic frameworks for hydrogen storage. Angew Chem Int Ed 46(33):6289–6292

    Article  Google Scholar 

  119. Dinca M, Long JR (2008) Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew Chem Int Ed 47(36):6766–6779

    Article  Google Scholar 

  120. Getman RB, Bae Y-S, Wilmer CE, Snurr RQ (2012) Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal–organic frameworks. Chem Rev 112(2):703–723

    Article  Google Scholar 

  121. Dinca M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR (2006) Hydrogen storage in a microporous metal−organic framework with exposed Mn2+ coordination sites. J Am Chem Soc 128(51):16876–16883

    Article  Google Scholar 

  122. Dinca M, Long JR (2007) High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal−organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. J Am Chem Soc 129(36):11172–11176

    Article  Google Scholar 

  123. Latroche M, Surblé S, Serre C, Mellot-Draznieks C, Llewellyn PL, Lee J-H, Chang J-S, Jhung SH, Férey G (2006) Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angew Chem Int Ed 45(48):8227–8231

    Article  Google Scholar 

  124. Dybtsev D, Serre C, Schmitz B, Panella B, Hirscher M, Latroche M, Llewellyn PL, Cordier S, Molard Y, Haouas M, Taulelle F, Férey G (2010) Influence of [Mo6Br8F6]2− cluster unit inclusion within the mesoporous solid MIL-101 on hydrogen storage performance. Langmuir 26(13):11283–11290

    Article  Google Scholar 

  125. Prestipino C, Regli L, Vitillo JG, Bonino F, Damin A, Lamberti C, Zecchina A, Solari PL, Kongshaug KO, Bordiga S (2006) Local structure of framework Cu(II) in HKUST-1 Metallorganic framework: spectroscopic characterization upon activation and interaction with adsorbates. Chem Mater 18(5):1337–1346

    Article  Google Scholar 

  126. Bordiga S, Regli L, Bonino F, Groppo E, Lamberti C, Xiao B, Wheatley PS, Morris RE, Zecchina A (2007) Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Phys Chem Chem Phys 9(21):2676–2685

    Article  Google Scholar 

  127. Yang QY, Zhong CL (2006) Understanding hydrogen adsorption in metal−organic frameworks with open metal sites: a computational study. J Phys Chem B 110(2):655–658

    Article  Google Scholar 

  128. Dietzel PD, Morita Y, Blom R, Fjellvåg H (2005) An in situ high-temperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains. Angew Chem Int Ed 44(39):6354–6358

    Article  Google Scholar 

  129. Dietzel PDC, Panella B, Hirscher M, Blom R, Fjellvåg H (2006) Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem Commun 9:959–961

    Article  Google Scholar 

  130. Rosi NL, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi OM (2005) Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127(5):1504–1518

    Article  Google Scholar 

  131. Zhou W, Wu H, Yildirim T (2008) Enhanced H2 adsorption in isostructural metal−organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. J Am Chem Soc 130(46):15268–15269

    Article  Google Scholar 

  132. Dietzel PDC, Georgiev PA, Eckert J, Blom R, Strässle T, Unruh T (2010) Interaction of hydrogen with accessible metal sites in the metal–organic frameworks M2(dhtp) (CPO-27-M; M = Ni, Co, Mg). Chem Commun 46(27):4962–4964

    Article  Google Scholar 

  133. Vitillo JG, Regli L, Chavan S, Ricchiardi G, Spoto G, Dietzel PDC, Bordiga S, Zecchina A (2008) Role of exposed metal sites in hydrogen storage in MOFs. J Am Chem Soc 130(26):8386–8396

    Article  Google Scholar 

  134. Liu Y, Kabbour H, Brown CM, Neumann DA, Ahn CC (2008) Increasing the density of adsorbed hydrogen with Coordinatively unsaturated metal centers in metal−organic frameworks. Langmuir 24(9):4772–4777

    Article  Google Scholar 

  135. Meilikhov M, Yusenko K, Esken D, Turner S, Van Tendeloo G, Fischer RA (2010) Metals@MOFs – loading MOFs with metal nanoparticles for hybrid functions. Eur J Inorg Chem 24:3701–3714

    Article  Google Scholar 

  136. Li Y, Yang RT (2006) Significantly enhanced hydrogen storage in metal−organic frameworks via spillover. J Am Chem Soc 128(3):726–727

    Article  Google Scholar 

  137. Li Y, Yang RT (2008) Hydrogen storage in metal-organic and covalent-organic frameworks by spillover. AICHE J 54(1):269–279

    Article  Google Scholar 

  138. Wang L, Yang RT (2008) New sorbents for hydrogen storage by hydrogen spillover – a review. Energy Environ Sci 1(2):268–279

    Article  Google Scholar 

  139. Liu Y-Y, Zeng J-L, Zhang J, Xu F, Sun L-X (2007) Improved hydrogen storage in the modified metal-organic frameworks by hydrogen spillover effect. Int J Hydrog Energy 32(16):4005–4010

    Article  Google Scholar 

  140. Proch S, Herrmannsdörfer J, Kempe R, Kern C, Jess A, Seyfarth L, Senker J (2008) Pt@MOF-177: synthesis, room-temperature hydrogen storage and oxidation catalysis. Chem Eur J 14(27):8204–8212

    Article  Google Scholar 

  141. Zlotea C, Campesi R, Cuevas F, Leroy E, Dibandjo P, Volkringer C, Loiseau T, Férey G, Latroche M (2010) Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. J Am Chem Soc 132(9):2991–2997

    Article  Google Scholar 

  142. Blomqvist A, Moysés Araújo C, Srepusharawoot P, Ahuja R (2007) Li-decorated metal–organic framework 5: a route to achieving a suitable hydrogen storage medium. PNAS 104(51):20173–20176

    Article  Google Scholar 

  143. Li A, Lu R-F, Wang Y, Wang X, Han K-L, Deng W-Q (2010) Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angew Chem Int Ed 49(19):3330–3333

    Article  Google Scholar 

  144. Yang S, Lin X, Blake AJ, Thomas KM, Hubberstey P, Champness NR, Schröder M (2008) Enhancement of H2 adsorption in Li+-exchanged co-ordination framework materials. Chem Commun 46:6108–6110

    Article  Google Scholar 

  145. Rowsell JLC, Yaghi OM (2005) Strategies for hydrogen storage in metal–organic frameworks. Angew Chem Int Ed Engl 44(30):4670–4679

    Article  Google Scholar 

  146. Ma S, Sun D, Ambrogio M, Fillinger JA, Parkin S, Zhou H-C (2007) Framework-catenation isomerism in metal−organic frameworks and its impact on hydrogen uptake. J Am Chem Soc 129(27):1858–1859

    Article  Google Scholar 

  147. Zhao X, Xiao B, Fletcher AJ, Thomas KM, Bradshaw D, Rosseinsky MJ (2004) Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. Sceince 306(5698):1012–1015

    Article  Google Scholar 

  148. Zhao D, Yuan D, Zhou H-C (2008) The current status of hydrogen storage in metalorganic frameworks. Energy Environ Sci 1(2):222–235

    Article  Google Scholar 

  149. Frost H, Snurr RQ (2007) Design requirements for metal-organic frameworks as hydrogen storage materials. J Phys Chem C 111(50):18794–18803

    Article  Google Scholar 

  150. Thomas KM (2009) Adsorption and desorption of hydrogen on metal–organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Trans 9:1487–1505

    Article  Google Scholar 

  151. Ben T, Pei C, Zhang D, Xu J, Deng F, Jing X, Qiu S (2011) Gas storage in porous aromatic frameworks (PAFs). Energy Environ Sci 4(10):3991

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip L. Llewellyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Llewellyn, P.L. (2019). Storage of Hydrogen on Nanoporous Adsorbents. In: Kaneko, K., Rodríguez-Reinoso, F. (eds) Nanoporous Materials for Gas Storage. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3504-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3504-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3503-7

  • Online ISBN: 978-981-13-3504-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics