, Volume 19, Issue 1, pp 161–188 | Cite as

A review on reactive adsorption for potential environmental applications



The aim of this paper is to present a critical review on reactive adsorption processes. The impact of surface modification on adsorption behavior of various adsorbents in context of reactive adsorption has been reviewed. Various characterization and detection methods involved to access and verify the surface morphology of adsorbent, presence of surface functionalities on adsorbent, and concentration of adsorbate have been concisely presented. The paper also delves into the inadequately researched grey areas of reactive adsorption which require further attention such as modeling and adsorbent regeneration so as to make the process more economic. The applicability of reactive adsorption to ensure a cleaner environment has also been briefly discussed. This article also underlines the areas, in which reactive adsorption can be implemented on a pilot scale.


Reactive adsorption Adsorbent modification Modeling Adsorbent regeneration Process intensification 



fluid phase concentration in interparticle voids, mol/m3


fluid phase concentration in pores, mol/m3


fluid concentration in pores at the close vicinity of pore surface, mol/m3


particle diameter, m


effective diffusion coefficient in pores, m2/s


reaction rate constant, 1/s


adsorption rate constant, m/s


mass transfer coefficient, m/s


adsorption linear equilibrium constant


mass flux, mol/(m2 s)


concentration in the solid phase, mol/m3


radial coordinate, m


rate of homogeneous reaction, mol/(m3 s)


rate of heterogeneous reaction, mol/(m3 s)


rate of adsorption (adsorption + reaction), mol/(m3 s)


time, s


interstitial fluid velocity, m/s


axial coordinate, m


bed porosity


particle porosity


stoichiometric coefficient


kinetic function


  1. Abecassis-Wolfovich, M., Jothiramalingam, R., Landau, M.V., Herskowitz, M., Viswanathan, B., Varadarajan, T.K.: Cerium incorporated ordered manganese oxide OMS-2 materials: improved catalysts for wet oxidation of phenol compounds. Appl. Catal. B, Environ. 59(1), 91–98 (2005) CrossRefGoogle Scholar
  2. Ahn, H., Lee, C.H.: Effects of capillary condensation on adsorption and thermal desorption dynamics of water in zeolite 13X and layered beds. Chem. Eng. Sci. 59(13), 2727–2743 (2004) CrossRefGoogle Scholar
  3. Al-Ahmad, A., Daschner, F.D., Kümmerer, K.: Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Arch. Environ. Contam. Toxicol. 37(2), 158–163 (1999) CrossRefGoogle Scholar
  4. Alkan, M., Celikcapa, S., Demirbas, O., Dogan, M.: Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solutions by sepiolite. Dyes Pigments 65(3), 251–259 (2005) CrossRefGoogle Scholar
  5. Ania, C.O., Bandosz, T.J.: Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene. Langmuir 21(17), 7752–7759 (2005) CrossRefGoogle Scholar
  6. Ania, C.O., Bandosz, T.J.: Metal-loaded polystyrene-based activated carbons as dibenzothiophene removal media via reactive adsorption. Carbon 44(12), 2404–2412 (2006a) CrossRefGoogle Scholar
  7. Ania, C.O., Bandosz, T.J.: Sodium on the surface of activated carbons as a factor enhancing reactive adsorption of dibenzothiophene. Energy Fuels 20(3), 1076–1080 (2006b) CrossRefGoogle Scholar
  8. Ania, C.O., Parra, J.B., Pis, J.J.: Influence of oxygen-containing functional groups on active carbon adsorption of selected organic compounds. Fuel Process. Technol. 79(3), 265–271 (2002) CrossRefGoogle Scholar
  9. Ania, C.O., Cabal, B., Pevida, C., Arenillas, A., Parra, J.B., Rubiera, F.: Removal of naphthalene from aqueous solution on chemically modified activated carbons. Water Res. 41, 333–340 (2007a) CrossRefGoogle Scholar
  10. Ania, C.O., Parra, J.B., Arenillas, A., Rubiera, F., Bandosz, T.J., Pis, J.J.: On the mechanism of reactive adsorption of dibenzothiophene on organic waste derived carbons. Appl. Surf. Sci. 253(13), 5899–5903 (2007b) CrossRefGoogle Scholar
  11. Ania, C.O., Pelayo, J.G., Bandosz, T.J.: Reactive adsorption of penicillin on activated carbons. Adsorption 17, 421–429 (2010) CrossRefGoogle Scholar
  12. Babich, I.V., Moulijn, J.A.: Science and technology of novel processes for deep desulfurization of oil refinery streams: a review* 1. Fuel 82(6), 607–631 (2003) CrossRefGoogle Scholar
  13. Bagreev, A., Bandosz, T.J.: A role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic-impregnated activated carbons. Ind. Eng. Chem. Res. 41(4), 672–679 (2002) CrossRefGoogle Scholar
  14. Bagreev, A., Bandosz, T.J., Locke, D.C.: Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon 39(13), 1971–1979 (2001) CrossRefGoogle Scholar
  15. Baltrusaitis, J., Jayaweera, P.M., Grassian, V.H.: XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions. Phys. Chem. Chem. Phys. 11(37), 8295–8305 (2009) CrossRefGoogle Scholar
  16. Bandosz, T.J.: On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. J. Colloid Interface Sci. 246(1), 1–20 (2002) CrossRefGoogle Scholar
  17. Bandosz, T.J., Block, K.: Municipal sludge-industrial sludge composite desulfurization adsorbents: synergy enhancing the catalytic properties. Environ. Sci. Technol. 40(10), 3378–3383 (2006) CrossRefGoogle Scholar
  18. Bandosz, T.J., Petit, C.: On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds. J. Colloid Interface Sci. 338, 329–345 (2009) CrossRefGoogle Scholar
  19. Bashkova, S., Bandosz, T.J.: The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon. J. Colloid Interface Sci. 333, 97–103 (2009) CrossRefGoogle Scholar
  20. Bashkova, S., Bandosz, T.J.: Reactive adsorption of NO2 at ambient conditions on iron-containing polymer-based porous carbons. ChemSusChem 4, 404–412 (2011) CrossRefGoogle Scholar
  21. Bashkova, S., Baker, F.S., Wu, X., Armstrong, T.R., Schwartz, V.: Activated carbon catalyst for selective oxidation of hydrogen sulphide: on the influence of pore structure, surface characteristics, and catalytically-active nitrogen. Carbon 45(6), 1354–1363 (2007) CrossRefGoogle Scholar
  22. Bezverkhyy, I., Ryzhikov, A., Gadacz, G., Bellat, J.P.: Kinetics of thiophene reactive adsorption on Ni/SiO2 and Ni/ZnO. Catal. Today 130(1), 199–205 (2008) CrossRefGoogle Scholar
  23. Bhandari, V.M., Hyun Ko, C., Geun Park, J., Han, S.S., Cho, S.H., Kim, J.N.: Desulfurization of diesel using ion-exchanged zeolites. Chem. Eng. Sci. 61(8), 2599–2608 (2006) CrossRefGoogle Scholar
  24. Bösmann, A., Datsevich, L., Jess, A., Lauter, A., Schmitz, C., Wasserscheid, P.: Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem. Commun. 23, 2494–2495 (2001) CrossRefGoogle Scholar
  25. Bousher, A., Shen, X., Edyvean, R.G.J.: Removal of coloured organic matter by adsorption onto low-cost waste materials. Water Res. 31(8), 2084–2092 (1997) CrossRefGoogle Scholar
  26. Brunet, S., Mey, D., Pérot, G., Bouchy, C., Diehl, F.: On the hydrodesulfurization of FCC gasoline: a review. Appl. Catal. A, Gen. 278(2), 143–172 (2005) CrossRefGoogle Scholar
  27. Cant, N.W., Liu, I.O.Y.: The mechanism of the selective reduction of nitrogen oxides by hydrocarbons on zeolite catalysts. Catal. Today 63(2–4), 133–146 (2000) CrossRefGoogle Scholar
  28. Chica, A., Strohmaier, K.G., Iglesia, E.: Effects of zeolite structure and aluminum content on thiophene adsorption, desorption, and surface reactions. Appl. Catal. B, Environ. 60(3–4), 223–232 (2005) CrossRefGoogle Scholar
  29. Chica, A., Corma, A., Dómine, M.E.: Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor. J. Catal. 242(2), 299–308 (2006) CrossRefGoogle Scholar
  30. Chowdhury, P., Singha, B., Mukherjee, A.: Adsorption and separation of mercury: sorption-desorption of Hg2+ with cross-linked graft copolymer of acrylic acid and its application in the metal ion separation process. Sep. Sci. Technol. 45(2), 256–261 (2010) CrossRefGoogle Scholar
  31. Crawford, R.J., Mainwaring, D.E., Harding, I.H.: Adsorption and coprecipitation of heavy metals from ammoniacal solutions using hydrous metal oxides. Colloids Surf. A, Physicochem. Eng. Asp. 126(2–3), 167–179 (1997) CrossRefGoogle Scholar
  32. Davoodi-Dehaghani, F., Vosoughi, M., Ziaee, A.A.: Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain. Bioresour. Technol. 101(3), 1102–1105 (2010) CrossRefGoogle Scholar
  33. Deliyanni, E., Bandosz, T.J.: Effect of carbon surface modification with dimethylamine on reactive adsorption of NOx. Langmuir (2010) Google Scholar
  34. Eijsbouts, S., Mayo, S.W., Fujita, K.: Unsupported transition metal sulfide catalysts: from fundamentals to industrial application. Appl. Catal. A, Gen. 322, 58–66 (2007) CrossRefGoogle Scholar
  35. Fan, J., Wang, G., Sun, Y., Xu, C., Zhou, H., Zhou, G., Gao, J.: Research on reactive adsorption desulfurization over Ni/ZnO-SiO2-Al2O3 adsorbent in a fixed-fluidized bed reactor. Ind. Eng. Chem. Res. (2010) Google Scholar
  36. Gao, X., Liu, S., Zhang, Y., Luo, Z., Ni, M., Cen, K.: Adsorption and reduction of NO2 over activated carbon at low temperature. Fuel Process. Technol. (2011) Google Scholar
  37. Gómez, M.J., Martinez Bueno, M.J., Lacorte, S., Fernández-Alba, A.R., Agüera, A.: Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere 66(6), 993–1002 (2007) CrossRefGoogle Scholar
  38. Goto, M., Hayashi, N., Goto, S.: Adsorption and desorption of phenol on anion-exchange resin and activated carbon. Environ. Sci. Technol. 20(5), 463–467 (1986) CrossRefGoogle Scholar
  39. Graham, J.R., Yuan, C.J.: Activated carbon for odor control and method for making same. In: Google Patents (2005) Google Scholar
  40. Gupta, V.K., Mittal, A., Gajbe, V.: Adsorption and desorption studies of a water soluble dye, Quinoline Yellow, using waste materials. J. Colloid Interface Sci. 284(1), 89–98 (2005) CrossRefGoogle Scholar
  41. Haji, S., Erkey, C.: Removal of dibenzothiophene from model diesel by adsorption on carbon aerogels for fuel cell applications. Ind. Eng. Chem. Res. 42(26), 6933–6937 (2003) CrossRefGoogle Scholar
  42. Harmankaya, M., Gündüz, G.: Catalytic oxidation of phenol in aqueous solution. Turk. J. Eng. Environ. Sci. 22, 9–15 (1995) Google Scholar
  43. Hernandez-Maldonado, A.J., Yang, F.H., Qi, G., Yang, R.T.: Desulfurization of transportation fuels by [pi]-complexation sorbents: Cu (I)-, Ni (II)-, and Zn (II)-zeolites. Appl. Catal. B, Environ. 56(1–2), 111–126 (2005) CrossRefGoogle Scholar
  44. Hernando, M.D., Mezcua, M., Fernandez-Alba, A.R., Barcelo, D.: Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69(2), 334–342 (2006) CrossRefGoogle Scholar
  45. Hu, L., Yang, X., Dang, S.: An easily recyclable Co/SBA-15 catalyst: heterogeneous activation of peroxymonosulfate for the degradation of phenol in water. Appl. Catal. B, Environ. 102(1), 19–26 (2011) CrossRefGoogle Scholar
  46. Hu, L., Dang, S., Yang, X., Dai, J.: Synthesis of recyclable catalyst-sorbent Fe/CMK-3 for dry oxidation of phenol. Microporous and Mesoporous Materials (2012) Google Scholar
  47. Huang, M.R., Lu, H.J., Song, W.D., Li, X.G.: Dynamic reversible adsorption and desorption of lead ions through a packed column of poly (m-phenylenediamine) spheroids. Soft Mater. 8(2), 149–163 (2010c) CrossRefGoogle Scholar
  48. Huang, L., Qin, Z., Wang, G., Du, M., Ge, H., Li, X., Wu, Z., Wang, J.: A detailed study on the negative effect of residual sodium on the performance of Ni/ZnO adsorbent for diesel fuel desulfurization. Ind. Eng. Chem. Res. 49(10), 4670–4675 (2010a) CrossRefGoogle Scholar
  49. Huang, L., Wang, G., Qin, Z., Du, M., Dong, M., Ge, H., Wu, Z., Zhao, Y., Ma, C., Hu, T.: A sulfur K-edge XANES study on the transfer of sulfur species in the reactive adsorption desulfurization of diesel oil over Ni/ZnO. Catal. Commun. 11(7), 592–596 (2010b) CrossRefGoogle Scholar
  50. Huang, L., Wang, G., Qin, Z., Dong, M., Du, M., Ge, H., Li, X., Zhao, Y., Zhang, J., Hu, T., Wang, J.: In situ XAS study on the mechanism of reactive adsorption desulfurization of oil product over Ni/ZnO. Appl. Catal. B, Environ. (2011) Google Scholar
  51. Idris, A., Saed, K.: Degradation of phenol in wastewater using anolyte produced from electrochemical generation of brine solution. Glob. NEST 4(2–3), 139–144 (2002) Google Scholar
  52. Ito, E., Van Veen, J.A.: On novel processes for removing sulphur from refinery streams. Catal. Today 116(4), 446–460 (2006) CrossRefGoogle Scholar
  53. Jia, Y.F., Thomas, K.M.: Adsorption of cadmium ions on oxygen surface sites in activated carbon. Langmuir 16(3), 1114–1122 (2000) CrossRefGoogle Scholar
  54. Jiang, Z., Liu, Y., Sun, X., Tian, F., Sun, F., Liang, C., You, W., Han, C., Li, C.: Activated carbons chemically modified by concentrated H2SO4 for the adsorption of the pollutants from wastewater and the dibenzothiophene from fuel oils. Langmuir 19(3), 731–736 (2003) CrossRefGoogle Scholar
  55. Johannsen, M.: Modeling of simulated moving-bed chromatography. In: Modeling of Process Intensification, pp. 279–322 (2007) CrossRefGoogle Scholar
  56. Juang, R.S., Tseng, R.L., Wu, F.C., Lee, S.H.: Adsorption behavior of reactive dyes from aqueous solutions on chitosan. J. Chem. Technol. Biotechnol. 70(4), 391–399 (1997) CrossRefGoogle Scholar
  57. Juang, R.S., Lin, S.H., Cheng, C.H.: Liquid-phase adsorption and desorption of phenol onto activated carbons with ultrasound. Ultrason. Sonochem. 13(3), 251–260 (2006) CrossRefGoogle Scholar
  58. Kanel, S.R., Greneche, J.M., Choi, H.: Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40(6), 2045–2050 (2006) CrossRefGoogle Scholar
  59. Khare, G.P.: Desulfurization process and novel bimetallic sorbent systems for same. In: Google Patents (2001) Google Scholar
  60. Kim, K.J., Kang, C.S., You, Y.J., Chung, M.C., Woo, M.W., Jeong, W.J., Park, N.C., Ahn, H.G.: Adsorption-desorption characteristics of VOCs over impregnated activated carbons. Catal. Today 111(3), 223–228 (2006b) CrossRefGoogle Scholar
  61. Kim, J.H., Ma, X., Zhou, A., Song, C.: Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: a study on adsorptive selectivity and mechanism. Catal. Today 111(1–2), 74–83 (2006a) CrossRefGoogle Scholar
  62. Kiriyama, K., Kimura, H., Nakajima, N., Fujikawa, T., Kubota, T., Okamoto, Y.: Development of highly active CoMo catalyst for hydrotreating of diesel fractions. Prepr. - Am. Chem. Soc., Div. Pet. Chem. 50(4), 353–355 (2005) Google Scholar
  63. Kulkarni, P.S., Afonso, C.A.M.: Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges. Green Chem. 12(7), 1139–1149 (2010) CrossRefGoogle Scholar
  64. Kulprathipanja, S.: Reactive Separation Processes. Hemisphere, Washington (2002) Google Scholar
  65. Laszlo, K., Tombacz, E., Novak, C.: pH-dependent adsorption and desorption of phenol and aniline on basic activated carbon. Colloids Surf. A, Physicochem. Eng. Asp. 306(1), 95–101 (2007) CrossRefGoogle Scholar
  66. Le Leuch, L.M., Bandosz, T.J.: The role of water and surface acidity on the reactive adsorption of ammonia on modified activated carbons. Carbon 45(3), 568–578 (2007) CrossRefGoogle Scholar
  67. Le Leuch, L.M., Subrenat, A., Le Cloirec, P.: Hydrogen sulfide and ammonia removal on activated carbon fiber cloth-supported metal oxides. Environ. Technol. 26(11), 1243–1254 (2005) CrossRefGoogle Scholar
  68. Levasseur, B., Petit, C., Bandosz, T.J.: Reactive adsorption of NO2 on copper-based metal-organic framework and graphite oxide/metal-organic framework composites. ACS Appl. Mater. Interfaces (2010) Google Scholar
  69. Levasseur, B., Ebrahim, A., Bandosz, T.J.: Role of Zr4+ cations in NO2 adsorption on Ce1−xZrxO2 mixed oxides at ambient conditions. Langmuir (2011) Google Scholar
  70. Levasseur, B., Ebrahim, A.M., Bandosz, T.J.: Mesoporous silica SBA-15 modified with copper as an efficient NO2 adsorbent at ambient conditions. J. Colloid Interface Sci. (2012) Google Scholar
  71. Li, X.G., Duan, W., Huang, M.R., Yang, Y.L., Zhao, D.Y., Dong, Q.Z.: A soluble ladder copolymer from m-phenylenediamine and ethoxyaniline. Polymer 44(19), 5579–5595 (2003) CrossRefGoogle Scholar
  72. Li, X.G., Huang, M.R., Feng, W., Zhu, M.F., Chen, Y.M.: Facile synthesis of highly soluble copolymers and sub-micrometer particles from ethylaniline with anisidine and sulfoanisidine. Polymer 45(1), 101–115 (2004) CrossRefGoogle Scholar
  73. Li, X.G., Huang, M.R., Hua, Y.M.: Facile synthesis of processible aminoquinoline/phenetidine copolymers and their pure semiconducting nanoparticles. Macromolecules 38(10), 4211–4219 (2005a) CrossRefGoogle Scholar
  74. Li, X.G., Liu, R., Huang, M.R.: Facile synthesis and highly reactive silver ion adsorption of novel microparticles of sulfodiphenylamine and diaminonaphthalene copolymers. Chem. Mater. 17(22), 5411–5419 (2005b) CrossRefGoogle Scholar
  75. Li, D., Yang, M., Hu, J., Zhang, Y., Chang, H., Jin, F.: Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Res. 42(1–2), 307–317 (2008) CrossRefGoogle Scholar
  76. Lodewyckx, P.: Adsorption of chemical warfare agents. Interface Sci. Technol. 7, 475–528 (2006) CrossRefGoogle Scholar
  77. Longhinotti, E., Pozza, F., Furlan, L., Sanchez, M.N.M., Klug, M., Laranjeira, M., Fávere, V.T.: Adsorption of anionic dyes on the biopolymer chitin. J. Braz. Chem. Soc. 9(5), 435–440 (1998) CrossRefGoogle Scholar
  78. Lu, G.Q., Low, J.C.F., Liu, C.Y., Lua, A.C.: Surface area development of sewage sludge during pyrolysis. Fuel 74(3), 344–348 (1995) CrossRefGoogle Scholar
  79. Luo, L., Ramirez, D., Rood, M.J., Grevillot, G., Hay, K.J., Thurston, D.L.: Adsorption and electrothermal desorption of organic vapors using activated carbon adsorbents with novel morphologies. Carbon 44(13), 2715–2723 (2006) CrossRefGoogle Scholar
  80. Ma, X., Velu, S., Kim, J.H., Song, C.: Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications. Appl. Catal. B, Environ. 56, 137–147 (2005) CrossRefGoogle Scholar
  81. Ma, X., Zhou, A., Song, C.: A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption. Catal. Today 123(1–4), 276–284 (2007) CrossRefGoogle Scholar
  82. Marrot, B., Barrios-Martinez, A., Moulin, P., Roche, N.: Biodegradation of high phenol concentration in a membrane bioreactor. Int. J. Chem. React. Eng. 6(6), 8 (2008) Google Scholar
  83. Martin, M.J., Artola, A., Balaguer, M.D., Rigola, M.: Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chem. Eng. J. 94(3), 231–239 (2003) CrossRefGoogle Scholar
  84. Matatov-Meytal, Y.I., Sheintuch, M.: Abatement of pollutants by adsorption and oxidative catalytic regeneration. Ind. Eng. Chem. Res. 36(10), 4374–4380 (1997) CrossRefGoogle Scholar
  85. McKay, G., Al-Duri, B., Allen, S.J., Thomson, A.: Adsorption for liquid process effluents. Ich. E. Semp. Pap. 17, 1–17 (1998) Google Scholar
  86. Molga, E.: Modelling of reactive adsorption processes. Chem. Process Eng. 29(3), 683–699 (2008) Google Scholar
  87. Monticello, D.J.: Biodesulfurization and the upgrading of petroleum distillates. Curr. Opin. Biotechnol. 11(6), 540–546 (2000) CrossRefGoogle Scholar
  88. Myyrylainen, M., Rantala, T.T.: Kinetic Monte Carlo modeling of CO desorption and adsorption on Pd (110) surface. Catal. Today 100(3), 413–417 (2005) CrossRefGoogle Scholar
  89. Nagl, G.J.: Controlling hydrogen sulfide emissions. Water Eng. Manag. 143(12), 18–22 (1996) Google Scholar
  90. Newton, M., Dent, A., Fiddy, S., Jyoti, B., Evans, J.: Particle size effects in Rh/Al2O3 catalysts as viewed from a structural, functional, and reactive perspective: the case of the reactive adsorption of NO. J. Mater. Sci. 42(10), 3288–3298 (2007) CrossRefGoogle Scholar
  91. Nguyen-Thanh, D., Bandosz, T.J.: Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide. Carbon 43(2), 359–367 (2005) CrossRefGoogle Scholar
  92. Nogueira, F.G.E., Lopes, J.H., Silva, A.C., Gonçalves, M., Anastácio, A.S., Sapag, K., Oliveira, L.C.A.: Reactive adsorption of methylene blue on montmorillonite via an ESI-MS study. Appl. Clay Sci. 43(2), 190–195 (2009) CrossRefGoogle Scholar
  93. Ozkaya, B.: Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J. Hazard. Mater. 129(1), 158–163 (2006) CrossRefGoogle Scholar
  94. Park, J.G., Ko, C.H., Yi, K.B., Park, J.H., Han, S.S., Cho, S.H., Kim, J.N.: Reactive adsorption of sulfur compounds in diesel on nickel supported on mesoporous silica. Appl. Catal. B, Environ. 81(3–4), 244–250 (2008) CrossRefGoogle Scholar
  95. Pawelec, B., Navarro, R.M., Campos-Martin, J.M., Fierro, J.L.G.: Towards near zero-sulfur liquid fuels: a perspective review. Catal. Sci. Technol. 1(1), 23–42 (2010) CrossRefGoogle Scholar
  96. Petit, C., Mendoza, B., Bandosz, T.J.: Reactive adsorption of ammonia on Cu-based MOF/graphene composites. Langmuir (2010) Google Scholar
  97. Pieterse, J.A.Z., van Eijk, S., van Dijk, H.A.J., van den Brink, R.W.: On the potential of absorption and reactive adsorption for desulfurization of ultra low-sulfur commercial diesel in the liquid phase in the presence of fuel additive and bio-diesel. Fuel Process. Technol. (2011) Google Scholar
  98. Pietrzak, R., Bandosz, T.J.: Reactive adsorption of NO2 at dry conditions on sewage sludge-derived materials. Environ. Sci. Technol. 41(21), 7516–7522 (2007) CrossRefGoogle Scholar
  99. Przepiorski, J., Abe, Y., Yoshida, S., Oya, A.: Preferential supporting of potassium carbonate around the peripheral region of activated carbon fibre. J. Mater. Sci. Lett. 16(15), 1312–1314 (1997) CrossRefGoogle Scholar
  100. Rio, S., Faur-Brasquet, C., Le Coq, L., Le Cloirec, P.: Structure characterization and adsorption properties of pyrolyzed sewage sludge. Environ. Sci. Technol. 39(11), 4249–4257 (2005) CrossRefGoogle Scholar
  101. Ritter, J.A., St, M.: Adsorption processes-history and recent developments (2008) Google Scholar
  102. Rodriguez-Gattorno, G., Galano, A., Torres-García, E.: Surface acid-basic properties of WOx-ZrO2 and catalytic efficiency in oxidative desulfurization. Appl. Catal. B, Environ. 92(1–2), 1–8 (2009) CrossRefGoogle Scholar
  103. Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley-Interscience, New York (1984) Google Scholar
  104. Ryzhikov, A., Bezverkhyy, I., Bellat, J.P.: Reactive adsorption of thiophene on Ni/ZnO: role of hydrogen pretreatment and nature of the rate determining step. Appl. Catal. B, Environ. 84(3–4), 766–772 (2008) CrossRefGoogle Scholar
  105. Sag, Y., Ataçoglu, I., Kutsal, T.: Equilibrium parameters for the single-and multicomponent biosorption of Cr (VI) and Fe (III) ions on R. arrhizus in a packed column. Hydrometallurgy 55(2), 165–179 (2000) CrossRefGoogle Scholar
  106. Sako, E.O., Kondoh, H., Nakai, I., Nambu, A., Nakamura, T., Ohta, T.: Reactive adsorption of thiophene on Au (111) from solution. Chem. Phys. Lett. 413(4–6), 267–271 (2005) CrossRefGoogle Scholar
  107. Samokhvalov, A., Tatarchuk, B.J.: Review of experimental characterization of active sites and determination of molecular mechanisms of adsorption, desorption and regeneration of the deep and ultradeep desulfurization sorbents for liquid fuels. Catal. Rev. 52(3), 381–410 (2010) CrossRefGoogle Scholar
  108. Schomaker, A., Boerboom, A.A.M., Visser, A., Pfeifer, A.E.: Anaerobic digestion of agro-industrial wastes: information networks: technical summary on gas treatment. AD-NETT Project FAIR-CT96-2083 (DG12-SSMI) (2000) Google Scholar
  109. Sentorun-Shalaby, C., Saha, S.K., Ma, X., Song, C.: Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-low-sulfur diesel fuel. Appl. Catal. B, Environ. (2011) Google Scholar
  110. Seredych, M., Bandosz, T.J.: Desulfurization of digester gas on catalytic carbonaceous adsorbents: complexity of interactions between the surface and components of the gaseous mixture. Ind. Eng. Chem. Res. 45(10), 3658–3665 (2006) CrossRefGoogle Scholar
  111. Seredych, M., Bandosz, T.J.: Removal of ammonia by graphite oxide via its intercalation and reactive adsorption. Carbon 45(10), 2130–2132 (2007a) CrossRefGoogle Scholar
  112. Seredych, M., Bandosz, T.J.: Removal of cationic and ionic dyes on industrial-municipal sludge based composite adsorbents. Ind. Eng. Chem. Res. 46(6), 1786–1793 (2007b) CrossRefGoogle Scholar
  113. Seredych, M., Bandosz, T.J.: Desulfurization of digester gas on wood-based activated carbons modified with nitrogen: importance of surface chemistry. Energy Fuels 22(2), 850–859 (2008) CrossRefGoogle Scholar
  114. Seredych, M., Hulicova-Jurcakova, D., Bandosz, T.J.: Effect of the incorporation of nitrogen to a carbon matrix on the selectivity and capacity for adsorption of dibenzothiophenes from model diesel fuel. Langmuir 26(1), 227–233 (2009) CrossRefGoogle Scholar
  115. Seredych, M., Deliyanni, E., Bandosz, T.J.: Role of microporosity and surface chemistry in adsorption of 4, 6-dimethyldibenzothiophene on polymer-derived activated carbons. Fuel 89(7), 1499–1507 (2010) CrossRefGoogle Scholar
  116. Seredych, M., Khine, M., Bandosz, T.J.: Enhancement in dibenzothiophene reactive adsorption from liquid fuel via incorporation of sulfur heteroatoms into the nanoporous carbon matrix. ChemSusChem 4(1), 139–147 (2011) CrossRefGoogle Scholar
  117. Shalaby, C., Ma, X., Zhou, A., Song, C.: Preparation of organic sulfur adsorbent from coal for adsorption of dibenzothiophene-type compounds in diesel fuel. Energy Fuels 23(5), 2620–2627 (2009) CrossRefGoogle Scholar
  118. Shin, C., Kim, K., Choi, B.: Deodorization technology at industrial facilities using impregnated activated carbon fiber. J. Chem. Eng. Jpn. 34(3), 401–406 (2001) CrossRefGoogle Scholar
  119. Shukla, P.R., Singh, K., Wang, S., Ang, H.M., Tadé, M.O.: Modelling and simulation of reactive adsorber for environmental remediation CHEMCON. Chandigarh, India (2008) Google Scholar
  120. Shukla, P., Wang, S., Singh, K., Ang, H.M., Tade, M.O.: Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl. Catal. B, Environ. 99(1–2), 163–169 (2010) CrossRefGoogle Scholar
  121. Siedlecka, E.M., Stepnowski, P.: Phenols degradation by Fenton reaction in the presence of chlorides and sulfates. Pol. J. Environ. Stud. 14(6), 823–828 (2005) Google Scholar
  122. Skrzypski, J., Bezverkhyy, I., Safonova, O., Bellat, J.P.: 2.8 NiO-H1. 8Ni0. 6 (OH) MoO4–Novel nanocomposite material for the reactive adsorption of sulfur-containing molecules at moderate temperature. Appl. Catal. B, Environmental (2011) Google Scholar
  123. Smith, A.H., Lingas, A.O., Rahman, M.: Contamination of drinking water by arsenic in bangladesh: a public health emergency. Bull. World Health Organ. 78(9), 1093–1103 (2000) Google Scholar
  124. Song, C.: An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel* 1. Catal. Today 86(1–4), 211–263 (2003) CrossRefGoogle Scholar
  125. Srivastav, A., Srivastava, V.C.: Adsorptive desulfurization by activated alumina. J. Hazard. Mater. 170(2–3), 1133–1140 (2009) CrossRefGoogle Scholar
  126. Stankiewicz, A.: Reactive separations for process intensification: an industrial perspective. Chem. Eng. Process. 42(3), 137–144 (2003) CrossRefGoogle Scholar
  127. Stoeckli, F., Guillot, A., Slasli, A.M.: Specific and non-specific interactions between ammonia and activated carbons. Carbon 42(8–9), 1619–1624 (2004) CrossRefGoogle Scholar
  128. Tanthapanichakoon, W., Ariyadejwanich, P., Japthong, P., Nakagawa, K., Mukai, S.R., Tamon, H.: Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water Res. 39(7), 1347–1353 (2005) CrossRefGoogle Scholar
  129. Tawara, K., Nishimura, T., Iwanami, H.: Ultra-deep hydrodesulfurization of kerosene for fuel cell system. Part 2: regeneration of sulfur-poisoned nickel catalyst in hydrogen and finding of auto-regenerative nickel catalyst. Sekiyu Gakkai Shi 43(2), 114–120 (2000) CrossRefGoogle Scholar
  130. Tawara, K., Nishimura, T., Iwanami, H., Nishimoto, T., Hasuike, T.: New hydrodesulfurization catalyst for petroleum-fed fuel cell vehicles and cogenerations. Ind. Eng. Chem. Res. 40(10), 2367–2370 (2001) CrossRefGoogle Scholar
  131. Truong, L.V.A., Abatzoglou, N.: A H2S reactive adsorption process for the purification of biogas prior to its use as a bioenergy vector. Biomass Bioenergy 29(2), 142–151 (2005) CrossRefGoogle Scholar
  132. Vavilin, V.A., Vasiliev, V.B., Ponomarev, A.V., Rytow, S.V.: Simulation model [] methane’as a tool for effective biogas production during anaerobic conversion of complex organic matter. Bioresour. Technol. 48(1), 1–8 (1994) CrossRefGoogle Scholar
  133. Velu, S., Ma, X., Song, C., Namazian, M., Sethuraman, S., Venkataraman, G.: Desulfurization of JP-8 jet fuel by selective adsorption over a Ni-based adsorbent for micro solid oxide fuel cells. Energy Fuels 19(3), 1116–1125 (2005) CrossRefGoogle Scholar
  134. Walker, G.M., Weatherley, L.R.: Adsorption of dyes from aqueous solution—the effect of adsorbent pore size distribution and dye aggregation. Chem. Eng. J. 83(3), 201–206 (2001) CrossRefGoogle Scholar
  135. Wang, Q., Liang, X.Y., Zhang, R., Liu, C.J., Liu, X.J., Qiao, W.M., Zhan, L., Ling, L.: Preparation of polystyrene-based activated carbon spheres and their adsorption of dibenzothiophene. New Carbon Mater. 24(1), 55–60 (2009) CrossRefGoogle Scholar
  136. Wong, Y., Yu, J.: Laccase-catalyzed decolorization of synthetic dyes. Water Res. 33(16), 3512–3520 (1999) CrossRefGoogle Scholar
  137. Xu, R., Xiao, S., Zhao, A., Ji, G.: Effect of Cr (VI) anions on adsorption and desorption behavior of Cu (II) in the colloidal systems of two authentic variable charge soils. J. Colloid Interface Sci. 284(1), 22–29 (2005) CrossRefGoogle Scholar
  138. Yan, T.Y.: Method for removing mercury from hydrocarbon oil by high temperature reactive adsorption. In: Google Patents (1990) Google Scholar
  139. Yan, T.Y.: Mercury removal from oil by reactive adsorption. Ind. Eng. Chem. Res. 35(10), 3697–3701 (1996) CrossRefGoogle Scholar
  140. Yang, R.T., Hernandez-Maldonado, A.J., Yang, F.H.: Desulfurization of transportation fuels with zeolites under ambient conditions. Science 301(5629), 79 (2003) CrossRefGoogle Scholar
  141. Yue, Z.R., Jiang, W., Wang, L., Toghiani, H., Gardner, S.D.: Adsorption of precious metal ions onto electrochemically oxidized carbon fibers. Carbon 37(10), 1607–1618 (1999) CrossRefGoogle Scholar
  142. Zawadzki, J., Wisniewski, M.: In situ characterization of interaction of ammonia with carbon surface in oxygen atmosphere. Carbon 41(12), 2257–2267 (2003) CrossRefGoogle Scholar
  143. Zhang, J., Liu, Y., Tian, S., Chai, Y., Liu, C.: Reactive adsorption of thiophene on Ni/ZnO adsorbent: effect of ZnO textural structure on the desulfurization activity. J. Nat. Gas Chem. 19(3), 327–332 (2010) CrossRefGoogle Scholar
  144. Zhang, Y., Yang, Y., Han, H., Yang, M., Wang, L., Zhang, Y., Jiang, Z., Li, C.: Ultra-deep desulfurization via reactive adsorption on Ni/ZnO: the effect of ZnO particle size on the adsorption performance. Appl. Catal. B, Environ. 119, 13–19 (2012) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMalaviya National Institute of TechnologyJaipurIndia

Personalised recommendations